Skip to main content

Advertisement

Log in

Do all fungi have ancestors with endophytic lifestyles?

  • Review
  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Fungi are an essential component of any ecosystem and have diverse ecological roles, ranging from endophytes to epiphytes and pathogens to saprobes. The current estimate of fungal endophytes is around 1 million species, however, we estimate that there is likely over 3 million species and only about 150,000 fungal species have been named and classified to date. Endophytes inhabit internal plant tissues without causing apparent harm to the hosts. Endophytes occur in almost every plant from the coldest climates to the tropics. They are thought to provide several benefits to host plants and improve the hosts’ ability to tolerate several abiotic and biotic stresses. Endophytes produce secondary metabolites with biotechnological, industrial and pharmaceutical application. Some endophytes appear to be host-specific, while some are associated with a wide range of hosts. We discuss the importance of endophytes. The ability to switch lifestyles from endophytes to pathogens or saprobes is discussed. Interactions between endophytes and hosts based on fossil data is also highlighted. Factors that influence the specificity in endophytes are discussed. We argue that the endophytic lifestyle is a common strategy in most fungi and that all fungi have endophytic ancestors. We critically evaluate the influence of co-evolution based on fossil data. We hypothesise the influence of specificity on the estimated number of endophytes and overall species numbers, and present examples of metabolites that they produce. We argue that studying endophytes for novel compounds has limitations as the genera recovered are limited. However, if saprobes were chosen instead, this would result in a much higher species diversity and undoubtedly chemical diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aist JR, Bushnell WR (1991) Invasion of plants by powdery mildew fungi, and cellular mechanisms of resistance. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Springer, Boston

    Google Scholar 

  • Allen EA (1991) Appressorium formation in response to topographical signals by 27 rust species. Phytopathology 81:323–331

    Article  Google Scholar 

  • Álvarez-Loayza P, White JF Jr, Torres MS, Balslev H, Kristiansen T, Svenning JC, Gill N (2011) Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PLoS ONE 6:e16386

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves JL, Santos-Seixas CD, Rodrigues FA, Barreto RW (2014) Production of viable and infective inoculum of Coccodiella miconiae (Ascomycota: Phyllachoraceae) for the biological control of Miconia calvescens. Biol Control 79:16–23

    Article  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  CAS  PubMed  Google Scholar 

  • Ametrano CG, Grewe F, Crous PW, Goodwin SB, Liang C, Selbmann L, Lumbsch HT, Leavitt SD, Muggia L (2019) Genome-scale data resolve ancestral rock-inhabiting lifestyle in Dothideomycetes (Ascomycota). IMA Fungus 10:1–12

    Article  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quévillon E, Sharon A, Simon A, At H, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjago WM, Zhou T, Zhang H, Shi M, Yang T, Zheng H, Wang Z (2018) Regulatory network of genes associated with stimuli sensing, signal transduction and physiological transformation of appressorium in Magnaporthe oryzae. Mycology 9:211–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armentrout VN (1987) Factors affecting infection cushion development by Rhizoctonia solani on cotton. Phytopathology 77:623–630

    Article  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  CAS  PubMed  Google Scholar 

  • Assante G, Maffi D, Saracchi M, Farina G, Moricca S, Ragazzi A (2004) Histological studies on the mycoparasitism of Cladosporium tenuissimum on urediniospores of Uromyees appendiculatus. Mycol Res 108:170–182

    Article  PubMed  Google Scholar 

  • Atanasov AG, Zotchev SB, Dirsch VM, the International Natural Product Sciences Taskforce, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20:200–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aylward J, Steenkamp ET, Dreyer LL, Roets F, Wingfield BD, Wingfield MJ (2017) A plant pathology perspective of fungal genome sequencing. IMA Fungus 8:1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacon CW, Hill NS (1996) Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptations of infected grasses. In: Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. APS Press, St Paul

  • Baldrian P, Větrovský T, Lepinay C, Kohout P (2021) High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers 19:1–9

    Google Scholar 

  • Banerjee D (2011) Endophytic fungal diversity in tropical and subtropical plants. Res J Microbiol 6:54–62

    Article  Google Scholar 

  • Barkai-Golan R (2001) Postharvest disease initiation. In: Postharvest diseases of fruits and vegetables. Elsevier, Amsterdam

  • Barna B, Fodor J, Harrach BD, Pogány M, Király Z (2012) The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol Biochem 59:37–43

    Article  CAS  PubMed  Google Scholar 

  • Bayman P (2006) Diversity, scale and variation of endophytic fungi in leaves of tropical plants. In: Microbial ecology of aerial plant surfaces. CABI International, Cambridge

  • Becker M, Becker Y, Green K, Scott B (2016) The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure. New Phytol 211:240–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354

    Article  CAS  PubMed  Google Scholar 

  • Bezerra JDP, Santos MGS, Svedese VM, Lima DMM, Fernandes MJS, Paiva LM, Souza-Motta CM (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Yoon HS, Hedges SB, Hackett JD (2009) Eukaryotes. In: The timetree of life. Oxford University Press, New York

  • Bhunjun CS, Jayawardena RS, Wei DP, Huanraluek N, Abeywickrama PD, Jeewon R, Monikai J, Hyde KD (2019) Multigene phylogenetic characterisation of Colletotrichum artocarpicola sp. nov. from Artocarpus heterophyllus in northern Thailand. Phytotaxa 418:273–286

    Article  Google Scholar 

  • Bhunjun CS, Dong Y, Jayawardena RS, Jeewon R, Phukhamsakda C, Bundhun D, Hyde KD, Sheng J (2020) A polyphasic approach to delineate species in Bipolaris. Fungal Divers 102:225–256

    Article  Google Scholar 

  • Bhunjun CS, Phillips AJ, Jayawardena RS, Promputtha I, Hyde KD (2021a) Importance of molecular data to identify fungal plant pathogens and guidelines for pathogenicity testing based on Koch’s postulates. Pathogens 10:1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhunjun CS, Phukhamsakda C, Jayawardena RS, Jeewon R, Promputtha I, Hyde KD (2021b) Investigating species boundaries in Colletotrichum. Fungal Divers 107:107–127

    Article  CAS  Google Scholar 

  • Bhunjun CS, Niskanen T, Suwannarach N, Wannathes N, Chen YJ, McKenzie EHC, Maharachchikumbura SSN, Buyck B, Zhao CL, Fan YG, Zhang JY, Dissanayake AJ, Marasinghe DS, Jayawardena RS, Kumla J, Padamsee M, Chen YY, Liimatainen K, Ammirati JF, Lumyong S, Phukhamsakda C, Liu JK, Phonrob W, Randrianjohany É, Hongsanan S, Cheewangkoon R, Bundhun D, Khuna S, Yu WJ, Deng LS, Lu YZ, Hyde KD (2022) The numbers of fungi: are the most speciose genera truly diverse? Fungal Divers 114:387–462

    Article  CAS  Google Scholar 

  • Blair J (2009) Fungi. In: The timetree of life. Oxford University Press, New York

  • Boenisch MJ, Schäfer W (2011) Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11:1–14

    Article  Google Scholar 

  • Boesewinkel HJ (1980) The morphology of the imperfect states of powdery mildews (Erysiphaceae). Bot Rev 46:167–224

    Article  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232:147–154

    Article  CAS  Google Scholar 

  • Brun S, Malagnac F, Bidard F, Lalucque H, Silar P (2009) Functions and regulation of the nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Mol Microbiol 74:480–496

    Article  CAS  PubMed  Google Scholar 

  • Bucher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14

    Google Scholar 

  • Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531

    Article  CAS  PubMed  Google Scholar 

  • Burdon JJ, Laine AL (2019) Coevolution and host and pathogen life-histories. In: Evolutionary dynamics of plant–pathogen interactions. Cambridge University Press, Cambridge

  • Carroll G (1986) The biology of endophytism in plants with particular reference to woody perennials. In: Microbiology of the phyllosphere. Cambridge University Press, Cambridge

  • Chen WQ, Gardner DE, Webb DT (1996) Biology and life cycle of Atelocauda koae, an unusual demicyclic rust. Mycoscience 37:91–98

    Article  Google Scholar 

  • Chen C, Wang J, Luo Q, Yuan S, Zhou M (2007) Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manag Sci 63:1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang LC, Xing YM, Wang YQ, Xing XK, Zhang DW, Liang HQ, Guo SX (2013) Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae). PLoS ONE 8:e58268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    Article  CAS  PubMed  Google Scholar 

  • Chethana KWT, Jayawardena RS, Chen YJ, Konta S, Tibpromma S, Phukhamsakda C, Abeywickrama PD, Samarakoon MC, Senwanna C, Mapook A, Tang X, Gomdola D, Marasinghe DS, Padaruth OD, Balasuriya A, Xu J, Lumyong S, Hyde KD (2021a) Appressorial interactions with host and their evolution. Fungal Divers 110:1–33

    Article  Google Scholar 

  • Chethana KWT, Jayawardena RS, Chen YJ, Konta S, Tibpromma S, Abeywickrama PD, Gomdola D, Balasuriya A, Xu J, Lumyong S, Hyde KD (2021b) Divers Funct Appressoria Pathog 10:746

    Google Scholar 

  • Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen SK, Smedegaard V (1990) Microscopic studies of the interaction between barley and the saprophytic fungus, Cladosporium macrocarpum. J Phytopathol 128:209–219

    Article  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  CAS  PubMed  Google Scholar 

  • Clay K, Marks S, Cheplick GP (1993) Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74:1767–1777

    Article  Google Scholar 

  • Clay RP, Enkerli J, Fuller MS (1994) Induction and formation of Cochliobolus sativus appressoria. Protoplasma 178:34–47

    Article  Google Scholar 

  • Clay K, Shearin ZRC, Bourke KA, Bickford WA, Kowalski KP (2016) Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes. Biol Invasions 18:2703–2716

    Article  Google Scholar 

  • Cleary MR, Daniel G, Stenlid J (2013) Light and scanning electron microscopy studies of the early infection stages of Hymenoscyphus pseudoalbidus on Fraxinus excelsior. Plant Pathol 62:1294–1301

    Article  Google Scholar 

  • Cook RTA, Braun U, Beales PA (2011) Development of appressoria on conidial germ tubes of Erysiphe species. Mycoscience 52:183–197

    Article  Google Scholar 

  • Cousin A, Mehrabi R, Guilleroux M, Dufresne M, Der Lee TVD, Waalwijk C, Langin T, Kema GHJ (2006) The MAP kinase-encoding gene MgFus3 of the non-appressorium phytopathogen Mycosphaerella graminicola is required for penetration and in vitro pycnidia formation. Mol Plant Pathol 7:269–278

    Article  CAS  PubMed  Google Scholar 

  • Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and liter quality. Trends Ecol Evol 10:63–66

    Article  PubMed  Google Scholar 

  • Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446

    Article  CAS  PubMed  Google Scholar 

  • Cui JL, Guo SX, Xiao PG (2011) Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J Zhejiang Univ Sci B 12:385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das P, Debnath G, Saha AK (2013) Endophytic fungal assemblages in an aquatic weed: Eichhornia crassipes (Mart.) Solms. Indian J Fundam Appl Life Sci 3:76–80

    Google Scholar 

  • De Bary A (1886) Ueber einige Sclerotinien und Sclero. Bot Zeitung 44:377–474

    Google Scholar 

  • De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33:133–148

    Article  Google Scholar 

  • De Silva NI, Maharachchikumbura SSN, Thambugala KM, Bhat DJ, Karunarathna SC, Tennakoon DS, Phookamsak R, Jayawardena RS, Lumyong S, Hyde KD (2021) Morpho-molecular taxonomic studies reveal a high number of endophytic fungi from Magnolia candolli and M. garrettii in China and Thailand. Mycosphere 12:163–237

    Article  Google Scholar 

  • De Vienne DM, Refrégier G, López-Villavicencio M, Tellier A, Hood ME, Giraud T (2013) Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol 198:347–385

    Article  PubMed  Google Scholar 

  • Deising HB, Werner S, Wernitz M (2000) The role of fungal appressoria in plant infection. Microbes Infect 2:1631–1641

    Article  CAS  PubMed  Google Scholar 

  • Delaye L, García-Guzmán G, Heil M (2013) Endophytes versus biotrophic and necrotrophic pathogens-are fungal lifestyles evolutionarily stable traits? Fungal Divers 60:125–135

    Article  Google Scholar 

  • Demoor A, Silar P, Brun S (2019) Appressorium: the breakthrough in Dikarya. J Fungi 5:72

    Article  CAS  Google Scholar 

  • Deutsch Y, Gur L, Berman Frank I, Ezra D (2021) Endophytes from algae, a potential source for new biologically active metabolites for disease management in aquaculture. Front Mar Sci 8:333

    Article  Google Scholar 

  • Di Pietro A, Roncero MIG (1998) Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant Microbe Interact 11:91–98

    Article  PubMed  Google Scholar 

  • Dickinson CH (1976) Fungi on the aerial surface of higher plants. In: Microbiology of aerial plant surfaces. Academic Press, London

  • Dilcher DL (1965) Epiphyllous fungi from Eocene deposits in western Tennessee, USA. Palaeontogr Abteilung B 1–4:1–54

    Google Scholar 

  • Ding X, Liu K, Deng B, Chen W, Li W, Liu F (2013) Isolation and characterization of endophytic fungi from Camptotheca acuminata. World J Microbiol Biotechnol 29:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Dissanayake AJ, Purahong W, Wubet T, Hyde KD, Zhang W, Xu H, Zhang G-J, Fu CY, Liu M, Xing Q, Li XH, Yan JY (2018) Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Divers 90:85–107

    Article  Google Scholar 

  • Doilom M, Manawasinghe IS, Jeewon R, Jayawardena RS, Tibpromma S, Hongsanan S, Meepol W, Lumyong S, Jones EB, Hyde KD (2017) Can ITS sequence data identify fungal endophytes from cultures? A case study from Rhizophora apiculata. Mycosphere 8:1869–1892

    Article  Google Scholar 

  • Dörfelt H, Schäfer U (1998) Fossile Pilze in Bernstein der alpischen Trias. Zeitschrift Für Mykol 64:141–152

    Google Scholar 

  • Dotzler N, Krings M, Taylor TN, Agerer R (2006) Germination shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 million-year-old Rhynie chert. Mycol Prog 5:178–184

    Article  Google Scholar 

  • Dotzler N, Krings M, Agerer R, Galtier J, Taylor TN (2008) Combresomyces cornifer gen. sp. nov., an endophytic peronosporomycete in Lepidodendron from the Carboniferous of central France. Mycol Res 112:1107–1114

    Article  PubMed  Google Scholar 

  • Dotzler N, Walker C, Krings M, Hass H, Kerp H, Taylor TN, Agerer R (2009) Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert. Mycol Prog 8:9–18

    Article  Google Scholar 

  • Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera Palmarum—the evolution and classification of the palms. Royal Botanic Gardens, Kew

    Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. Biotechnology 26:49–80

    CAS  PubMed  Google Scholar 

  • Du ZY, Zienkiewicz K, Pol NV, Ostrom NE, Benning C, Bonito GM (2019) Algal-fungal symbiosis leads to photosynthetic mycelium. Elife 8:e47815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan WJ, Zhang XQ, Yang TZ, Dou XW, Chen TG, Li SJ, Jiang SJ, Huang YJ, Yin QY (2010) A novel role of ammonia in appressorium formation of Alternaria alternata (Fries) Keissler, a tobacco pathogenic fungus. J Plant Dis Prot 117:112–116

    Article  Google Scholar 

  • Dyakov YT, Dzhavakhiya VG, Korpela T (2007) Molecular basis of plant immunization. In: Comprehensive and Molecular Phytopathology. Elsevier

  • Ek-Ramos MJ, Zhou W, Valencia CU, Antwi JB, Kalns LL, Morgan GD, Kerns DL, Sword GA (2013) Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum). PLoS ONE 8:e66049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny YA, El-Fakharany EM (2022) A comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges. J Fungi 8:23

    Article  CAS  Google Scholar 

  • Emmett RW, Parbery DG (1975) Appressoria. Annu Rev Phytopathol 13:147–165

    Article  Google Scholar 

  • Epstein L, Kaur S, Goins T, Kwon YH, Henson JM (1994) Production of hyphopodia by wild-type and three transformants of Gaeumannomyces graminis var. graminis. Mycologia 86:72–81

    Article  Google Scholar 

  • Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. CRC Crit Rev Plant Sci 18:183–225

    Article  Google Scholar 

  • Fernandes EG, Pereira OL, da Silva CC, Bento CB, de Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92

    Article  PubMed  Google Scholar 

  • Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers Conserv 16:85–98

    Article  Google Scholar 

  • Firmino AL, Inácio CA, Pereira OL, Dianese JC (2016) Additions to the genera Asterolibertia and Cirsosia (Asterinaceae, Asterinales), with particular reference to species from the Brazilian Cerrado. IMA Fungus 7:9–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher PJ, Petrini O, Sutton BC (1993) A comparative study of fungal endophytes in leaves, xylem and bark of Eucalyptus in Australia and England. Sydowia 45:338–345

    Google Scholar 

  • Francis SA, Dewey FM, Gurr SJ (1996) The role of cutinase in germling development and infection by Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol 49:201–211

    Article  CAS  Google Scholar 

  • Frank AB (1887) Ueber einige neue und weniger bekannte Pflanzenkrankheiten

  • Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci USA 101:10107–10112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Liu F, Cai L (2016) Unravelling Diaporthe species associated with Camellia. Syst Biodivers 14:102–117

    Article  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gautam AK, Avasthi S (2017) Discovery of Puccinia tiliaefolia (Pucciniales) in Northwestern Himalayas, India. Polish Bot J 62:135–137

    Article  Google Scholar 

  • Gehrig H, Schüßler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (cyanobacteria), is an ancestral member of the glomales: evidence by SSU rRNA analysis. J Mol Evol 43:71–81

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Lanfranco L (2016) Endophytic coming out: The expressorium as a novel fungal structure specialized in outward-directed penetration of the leaf cuticle. New Phytol 211:5–7

    Article  PubMed  Google Scholar 

  • Gensel PG (2008) The earliest land plants. Annu Rev Ecol Evol Syst 39:459–477

    Article  Google Scholar 

  • Geoghegan IA, Gurr SJ (2016) Chitosan mediates germling adhesion in Magnaporthe oryzae and is required for surface sensing and germling morphogenesis. PLoS Pathog 12:e1005703

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers 47:19–27

    Article  Google Scholar 

  • Glauser G, Gindro K, Fringeli J, De Joffrey JP, Rudaz S, Wolfender JL (2009) Differential analysis of mycoalexins in confrontation zones of grapevine fungal pathogens by ultrahigh pressure liquid chromatography/time-of-flight mass spectrometry and capillary nuclear magnetic resonance. J Agric Food Chem 57:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108:267–289

    Article  PubMed  PubMed Central  Google Scholar 

  • González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42

    Article  Google Scholar 

  • González V, Armijos E, Garcés-Claver A (2020) Fungal endophytes as biocontrol agents against the main soil-borne diseases of melon and watermelon in Spain. Agronomy 10:820

    Article  Google Scholar 

  • Goodwin SB, Ben MS, Dhillon B, Wittenberg AH, Crane CF, Hane JK, Foster AJ, Van der Lee TA, Grimwood J, Aerts A, Antoniw J, Bailey A, Bluhm B, Bowler J, Bristow J, van der Burgt A, Canto-Canché B, Churchill ACL, Conde-Ferràez L, Cools HJ, Coutinho PM, Csukai M, Dehal P, De Wit P, Donzelli B, van de Geest HC, van Ham RCHJ, Hammond-Kosack KE, Henrissat B, Kilian A, Kobayashi AK, Koopmann E, Kourmpetis Y, Kuzniar A, Lindquist E, Lombard V, Maliepaard C, Martins N, Mehrabi R, Nap JPH, Ponomarenko A, Rudd JJ, Salamov A, Schmutz J, Schouten HJ, Shapiro H, Stergiopoulos I, Torriani SFF, Tu H, de Vries RP, Waalwijk C, Ware SB, Wiebenga A, Zwiers LH, Oliver RP, Grigoriev IV, Kema GHJ (2011) Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7:e1002070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Gourgues M, Brunet-Simon A, Lebrun MH, Levis C (2004) The tetraspanin BcPIs1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol 51:619–629

    Article  CAS  PubMed  Google Scholar 

  • Govinda Rajulu MB, Thirunavukkarasu N, Babu AG, Aggarwal A, Suryanarayan TS, Reddy MS (2013) Endophytic Xylariaceae from the forests of Western Ghats, southern India: distribution and biological activities. Mycology 4:29–37

    Google Scholar 

  • Green JR, Carver TL, Gurr SJ (2002) The formation and function of infection and feeding structures. In: The powdery mildews: a comprehensive treatise. American Phytopathological Society (APS Press), USA

  • Green KA, Eaton CJ, Savoian MS, Scott B (2019) A homologue of the fungal tetraspanin Pls1 is required for Epichloë festucae expressorium formation and establishment of a mutualistic interaction with Lolium perenne. Mol Plant Pathol 20:961–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN (2014) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15:5–21

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro MA, Brachmann A, Begerow D, Peršoh D (2018) Transient leaf endophytes are the most active fungi in 1-year-old beech leaf litter. Fungal Divers 89:237–251

    Article  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147:617–630

    Article  CAS  PubMed  Google Scholar 

  • Habibi A, Banihashemi Z (2016) Mating system and role of pycnidiospores in biology of Polystigma amygdalinum, the causal agent of almond red leaf blotch. Phytopathol Mediterr 55:98–108

    Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harper CJ, Taylor TN, Krings M, Taylor EL (2013) Mycorrhizal symbiosis in the Paleozoic seed fern Glossopteris from Antarctica. Rev Palaeobot Palynol 192:22–31

    Article  Google Scholar 

  • Harper CJ, Walker C, Schwendemann AB, Kerp H, Krings M (2021) Archaeosporites rhyniensis gen. et sp. nov. (Glomeromycota, Archaeosporaceae) from the lower devonian rhynie chert: a fungal lineage morphologically unchanged for more than 400 million years. Ann Bot 126:915–928

    Article  Google Scholar 

  • Harvey R, Lyon AG, Lewis PN (1969) A fossil fungus from Rhynie chert. Trans Br Mycol Soc 53:155–157

    Article  Google Scholar 

  • Hass H, Taylor TN, Remy W (1994) Fungi from the lower Devonian Rhynie chert: Mycoparasitism. Am J Bot 81:29–37

    Article  Google Scholar 

  • Hasselbring H (1906) The appressoria of the anthracnoses. Bot Gaz 42:135–142

    Article  Google Scholar 

  • Hatfield JL, Antle J, Garrett KA, Izaurralde RC, Mader T, Marshall E, Nearing M, Robertson GP, Ziska L (2020) Indicators of climate change in agricultural systems. Clim Change 163:1719–1732

    Article  Google Scholar 

  • Hatzipapas P, Kalosaka K, Dara A, Christias C (2002) Spore germination and appressorium formation in the entomopathogenic Alternaria alternata. Mycol Res 106:1349–1359

    Article  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371

    Article  Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    Article  CAS  PubMed  Google Scholar 

  • Ho WH, To PC, Hyde KD (2003) Induction of antibiotic production of freshwater fungi using mix-culture fermentation. Fungal Divers 12:45–51

    Google Scholar 

  • Hoch HC, Staples RC (1987) Structural and chemical changes among the rust fungi during appressorium development. Annu Rev Phytopathol 25:231–247

    Article  Google Scholar 

  • Hofmann TA, Piepenbring M (2014) New records of plant parasitic Asterinaceae (Dothideomycetes, Ascomycota) with intercalary appressoria from central America and Panama. Trop Plant Pathol 39:419–427

    Article  Google Scholar 

  • Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, Sarma VV, Boonmee S, Lücking R, Bhat DJ, Liu NG, Tennakoon DS, Pem D, Karunarathna A, Jiang SH, Jones EBG, Phillips AJL, Manawasinghe IS, Tibpromma S, Jayasiri SC, Sandamali DS, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Dissanayake AJ, Zeng XY, Luo ZL, Tian Q, Phukhamsakda C, Thambugala KM, Dai DQ, Chethana KWT, Ortega S, Suija A, Senwanna C, Wijesinghe SN, Konta S, Niranjan M, Zhang SN, Ariyawansa HA, Jiang HB, Zhang JF, Norphanphoun C, de Silva NI, Thiyagaraja V, Zhang H, Bezerra JDP, Miranda-González R, Aptroot A, Kashiwadani H, Harishchandra D, Sérusiaux E, Aluthmuhandiram JVS, Abeywickrama PD, Devadatha B, Wu HX, Moon KH, Gueidan C, Schumm F, Bundhun D, Mapook A, Monkai J, Chomnunti P, Suetrong S, Chaiwan N, Dayarathne MC, Yang J, Rathnayaka AR, Bhunjun CS, Xu JC, Zheng JS, Liu G, Feng Y, Xie N (2020) Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11:1553–2107

    Article  Google Scholar 

  • Hou PF, Chen CY (2003) Early stages of infection of lily leaves by Botrytis elliptica and B. cinerea. Plant Pathol Bull 12:103–108

    Google Scholar 

  • Hyde KD, Soytong K (2008) The Fungal Endophyte Dilemma Fungal Divers 33:163–173

    Google Scholar 

  • Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, Mckenzie EHC, Photita W, Lumyong S (2007) Diversity of saprobic microfungi. Biodivers Conserv 16:7–35

    Article  Google Scholar 

  • Hyde KD, Xu JC, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, Chaiyasen A, Chethana KWT, Chomnunti P, Chepkirui C, Chuankid B, de Silva NI, Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu JK, Liu N, Luangharn T, Macabeo APG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, O’Brien M, Penkhrue W, Phukhamsakda C, Ramanan US, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Tennakoon DS, Siva R, Sriprom W, Suryanarayanan TS, Sujarit K, Suwannarach N, Suwunwong T, Thongbai B, Thongklang N, Wei DP, Wijesinghe SN, Winiski J, Yan J, Yasanthika E, Stadler M (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136

    Article  Google Scholar 

  • Hyde K, Norphanphoun C, Maharachchikumbura S, Bhat D, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chaiwan N, Chethana KWT, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilom M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS, Jeewon R, Karunarathna A, Konta S, Kumar V, Lin CG, Liu JK, Liu N, Luangsa-ard J, Lumyong S, Luo ZL, Marasinghe DS, McKenzie EHC, Niego AGT, Niranjan M, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon SMBC, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wei DP, Wijayawardene NN, Xiao YP, Xiang MM, Yang J, Zeng XY, Zhang SN (2020a) Refined families of sordariomycetes. Mycosphere 11:305–1059

    Article  Google Scholar 

  • Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu JK, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Jones EBG, Lumyong S (2020b) The numbers of fungi: is the descriptive curve flattening? Fungal Divers 103:219–271

    Article  Google Scholar 

  • Hywel-Jones NL (1993) A systematic survey of insect fungi from natural, tropical forest in Thailand. Asp Trop Mycol 300–301

  • Inoue S, Kato T, Jordan VWL, Brent KJ (1987) Inhibition of appressorial adhesion of Pyricularia oryzae to barley leaves by fungicides. Pestic Sci 19:145–152

    Article  CAS  Google Scholar 

  • Irieda H, Maeda H, Akiyama K, Hagiwara A, Saitoh H, Uemura A, Terauchi R, Takano Y (2014) Colletotrichum orbiculare secretes virulence effectors to a biotrophic interface at the primary hyphal neck via exocytosis coupled with SEC22-mediated traffic. Plant Cell 26:2265–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobi WR (1982) Microscopy of cultured loblolly pine seedlings and callus inoculated with Cronartium fusiforme. Phytopathology 72:138–143

    Article  Google Scholar 

  • Jayawardena RS, Purahong W, Zhang W, Wubet T, Li X, Liu M, Zhao W, Hyde KD, Liu J, Yan J (2018) Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers 90:1–84

    Article  Google Scholar 

  • Jayawardena RS, Bhunjun CS, Hyde KD, Gentekaki E, Itthayakorn P (2021) Colletotrichum: lifestyles, biology, morpho-species, species complexes and accepted species. Mycosphere 12:519–669

    Article  Google Scholar 

  • Jinu M, Jayabaskaran C (2015) Diversity and anticancer activity of endophytic fungi associated with the medicinal plant, Saraca asoca. Curr Res Environ Appl Mycol 5:169–179

    Article  Google Scholar 

  • Johnson LJ, De Bonth ACM, Briggs LR, Caradus JR, Finch SC, Fleetwood DJ, Fletcher LR, Hume DE, Johnson RD, Popay AJ, Tapper BA, Simpson WR, Voisey CR, Card SD (2013) The exploitation of Epichloae endophytes for agricultural benefit. Fungal Divers 60:171–188

    Article  Google Scholar 

  • Johnson TW, Seymour RL, Padgett DE (2002) Biology and systematics of the Saprolegniaceae. University of North Carolina at Wilmington, Wilmington

    Google Scholar 

  • Jones H, Whipps JM, Gurr SJ (2001) The tomato powdery mildew fungus Oidium neolycopersici. Mol Plant Pathol 2:303–309

    Article  CAS  PubMed  Google Scholar 

  • Jones EBG, Hyde KD, Pang KL (2014) Freshwater fungi and fungal-like organisms. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54:343–354

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448

    Article  CAS  PubMed  Google Scholar 

  • Junker C, Draeger S, Schulz B (2012) A fine line - endophytes or pathogens in Arabidopsis thaliana. Fungal Ecol 5:657–662

    Article  Google Scholar 

  • Kalgutkar RM, Jansonius J (2000) Synopsis of fossil fungal spores, mycelia and fructifications. AASP Contrib 39:1–423

    Google Scholar 

  • Kar RK, Sharma N, Kar R (2004) Occurrence of fossil fungi in dinosaur dung and its implication on food habit. Curr Sci 87:1053–1056

    Google Scholar 

  • Kar R, Mandaokar BD, Kar RK (2010) Fungal taxa from the Miocene sediments of Mizoram, northeast India. Rev Palaeobot Palynol 158:240–249

    Article  Google Scholar 

  • Karatygin IV, Snigirevskaya NS, Demchenko KN (2006) Species of the genus Glomites as plant mycobionts in Early Devonian ecosystems. Paleontol J 40:572–579

    Article  Google Scholar 

  • Kemen E, Jones JDG (2012) Obligate biotroph parasitism: can we link genomes to lifestyles? Trends Plant Sci 17:448–457

    Article  CAS  PubMed  Google Scholar 

  • Kemler M, Garnas J, Wingfield MJ, Gryzenhout M, Pillay KA, Slippers B (2013) Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in eucalyptus grandis reveals high taxonomic diversity. PLoS ONE 8:e81718

    Article  PubMed  PubMed Central  Google Scholar 

  • Kidston R, Lang WH (1921) On Old Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part V. The thallophyta occurring in the peat-bed; the succession of the plants through a vertical section of the bed, and the conditions of accumulation and preservation. Trans R Soc Edinb 52:855–902

    Article  Google Scholar 

  • Kim H, Ridenour JB, Dunkle LD, Bluhm BH (2011) Regulation of stomatal tropism and infection by light in cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod? PLoS Pathog 7:e1002113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp DG, Németh JB, Barry K, Hainaut M, Henrissat B, Johnson J, Kuo A, Lim JH, Lipzen A, Nolan M, Ohm RA (2018) Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep 8:1–3

    Article  CAS  Google Scholar 

  • Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite - what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Koide K, Osono T, Takeda H (2005) Fungal succession and decomposition of Camellia japonica leaf litter. Ecol Res 20:599–609

    Article  Google Scholar 

  • Kong LA, Li GT, Liu Y, Liu MG, Zhang SJ, Yang J, Zhou XY, Peng YL, Xu JR (2013) Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Fungal Genet Biol 56:33–41

    Article  CAS  PubMed  Google Scholar 

  • Konta S, Hongsanan S, Tibpromma S et al (2016) An advance in the endophyte story: Oxydothidaceae fam. nov. with six new species of Oxydothis. Mycosphere 7:1425–1446

    Article  Google Scholar 

  • Krings M, Taylor TN (2013) Zwergimyces vestitus (Kidston et W.H. Lang) nov. comb., a fungal reproductive unit enveloped in a hyphal mantle from the Lower Devonian Rhynie chert. Rev Palaeobot Palynol 190:15–19

    Article  Google Scholar 

  • Krings M, Dotzler N, Taylor TN, Galtier J (2009) A Late Pennsylvanian fungal leaf endophyte from Grand-Croix, France. Rev Palaeobot Palynol 156:449–453

    Article  Google Scholar 

  • Krings M, Taylor TN, Taylor EL, Dotzler N, Walker C (2011) Arbuscular mycorrhizal-like fungi in carboniferous arborescent lycopsids. New Phytol 191:311–314

    Article  PubMed  Google Scholar 

  • Krings M, Taylor TN, Dotzler N (2012) Fungal endophytes as a driving force in land plant evolution: evidence from the fossil record. In: Biocomplexity of plant–fungal interactions. Wiley, Chichester

  • Krombach S, Reissmann S, Kreibich S, Bochen F, Kahmann R (2018) Virulence function of the Ustilago maydis sterol carrier protein 2. New Phytol 220:553–566

    Article  CAS  PubMed  Google Scholar 

  • Kuhnert E, Navarro-Muñoz JC, Becker K, Stadler M, Collemare J, Cox RJ (2021) Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud Mycol 99:100118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers 17:69–90

    CAS  Google Scholar 

  • Kumar J, Hückelhoven R, Beckhove U, Nagarajan S, Kogel KH (2001) A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127–133

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Košuth J, Čellárová E, Spiteller M (2011) Survival-strategies of endophytic Fusarium solani against indigenous camptothecin biosynthesis. Fungal Ecol 4:219–223

    Article  Google Scholar 

  • Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87

    Article  CAS  PubMed  Google Scholar 

  • Kwon YH, Hoch HC, Aist JR (1991) Initiation of appressorium formation in Uromyces appendiculatus: organization of the apex, and the responses involving microtubules and apical vesicles. Can J Bot 69:2560–2573

    Article  Google Scholar 

  • Lahrmann U, Zuccaro A (2012) Opprimo ergo sum-evasion and suppression in the root endophytic fungus Piriformospora indica. Mol Plant Microbe Interact 25:727–737

    Article  CAS  PubMed  Google Scholar 

  • Lana TG, Azevedo JL, Pomella AW, Monteiro RTR, Silva CB, Araújo WL (2011) Endophytic and pathogenic isolates of the cacao fungal pathogen Moniliophthora perniciosa (Tricholomataceae) are indistinguishable based on genetic and physiological analysis. Genet Mol Res 10:326–334

    Article  CAS  PubMed  Google Scholar 

  • Lanver D, Tollot M, Schweizer G, Lo Presti L, Reissmann S, Ma LS, Schuster M, Tanaka S, Liang L, Ludwig N, Kahmann R (2017) Ustilago maydis effectors and their impact on virulence. Nat Rev Microbiol 15:409–421

    Article  CAS  PubMed  Google Scholar 

  • Larran S, Perelló A, Simón MR, Moreno V (2002) Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World J Microbiol Biotechnol 18:683–686

    Article  CAS  Google Scholar 

  • Lee C, Kim S, Li W, Bang S, Lee H, Lee HJ, Noh EY, Park JE, Bang WY, Shim SH (2017) Bioactive secondary metabolites produced by an endophytic fungus Gaeumannomyces sp. JS0464 from a maritime halophyte Phragmites communis. J Antibiot (tokyo) 70:737–742

    Article  CAS  PubMed  Google Scholar 

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant–microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    Article  PubMed  Google Scholar 

  • Li R, Rimmer R, Buchwaldt L, Sharpe AG, Séguin-Swartz G, Hegedus DD (2004) Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet Biol 41:754–765

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang X, Li L, Liu J, Zhang Y, Pan H (2018) Proteomics analysis of SsNsd1-mediated compound appressoria formation in Sclerotinia sclerotiorum. Int J Mol Sci 19:2946

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Wang Y, Ma B, Hou J, Jin Y, Zhang Y, Ke X, Tai L, Zuo Y, Dey K (2016) Clg2p interacts with Clf and ClUrase to regulate appressorium formation, pathogenicity and conidial morphology in Curvularia lunata. Sci Rep 6:1–14

    Google Scholar 

  • Lopez-Gomez M, Sandal N, Stougaard J, Boller T (2012) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J Exp Bot 63:393–401

    Article  CAS  PubMed  Google Scholar 

  • Loron CC, François C, Rainbird RH, Turner EC, Borensztajn S, Javaux EJ (2019) Early fungi from the Proterozoic era in Arctic Canada. Nature 570:232–235

    Article  CAS  PubMed  Google Scholar 

  • Lucero ME, Unc A, Cooke P, Dowd S, Sun S (2011) Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS ONE 6:e17693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg BJJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92:fiw94

    Article  Google Scholar 

  • Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2002) Enzymatic activity of endophytic fungi of six native seedling species from Doi Suthep-Pui National Park, Thailand. Can J Microbiol 48:1109–1112

    Article  CAS  PubMed  Google Scholar 

  • Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, Arnold AE, Lewis LA, Swofford DL, Hibbett D, Hilu K, James TY, Quandt D, Magallón S (2018) Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun 9:1–11

    Article  Google Scholar 

  • Lyons PC, Evans JJ, Bacon CW (1990) Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol 92:726–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Kang J, Nontachaiyapoom S, Wen T, Hyde KD (2015) Non-mycorrhizal endophytic fungi from orchids. Curr Sci 109:72–87

    Google Scholar 

  • Ma X, Nontachaiyapoom S, Jayawardena RS, Hyde KD, Gentekaki E, Zhou S, Qian Y, Wen T, Kang J (2018) Endophytic Colletotrichum species from Dendrobium spp. in China and northern Thailand. MycoKeys 43:23–57

    Article  Google Scholar 

  • Madritch MD, Hunter MD (2003) Intraspecific litter diversity and nitrogen deposition affect nutrient dynamics and soil respiration. Oecologia 136:124–128

    Article  PubMed  Google Scholar 

  • Maiquez JA, Pineda FG, Valentino MJG (2016) Auxin like activity of endophytic fungi associated with bamboo in rice (Oriza staiva). Int J Biol Pharm Allied Sci 5:1707–1716

    Google Scholar 

  • Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi A, Mahmoudi T, Ponts N, Studt L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M (2022) Ten decadal advances in fungal biology leading towards human well-being. Fungal Divers 116:547–614

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsberg A, Slippers B, Wingfield MJ, Gryzenhout M (2014) Endophyte isolations from Syzygium cordatum and a Eucalyptus clone (Myrtaceae) reveal new host and geographical reports for the Mycosphaerellaceae and Teratosphaeriaceae. Australas Plant Pathol 43:503–512

    Article  Google Scholar 

  • Marshall DS (1980) Infection cushion formation on rice sheaths by Rhizoctonia solani. Phytopathology 70:947–950

    Article  Google Scholar 

  • Mattoo AJ, Nonzom S (2021) Endophytic fungi: understanding complex cross-talks. Symbiosis 83:237–264

    Article  Google Scholar 

  • Mehrotra MD (1990) Rhizoctonia solani, a potentially dangerous pathogen of khasi pine and hardwoods in forest nurseries in India. Eur J for Pathol 20:329–338

    Article  Google Scholar 

  • Mendoza-Mendoza A, Zaid R, Lawry R, Hermosa R, Monte E, Horwitz BA, Mukherjee PK (2018) Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biol Rev 32:62–85

    Article  Google Scholar 

  • Money NP, Caesar-TonThat TC, Frederick B, Henson JM (1998) Melanin synthesis is associated with changes in hyphopodial turgor, permeability, and wall rigidity in Gaeumannomyces graminis var. graminis. Fungal Genet Biol 24:240–251

    Article  CAS  PubMed  Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee D (2012) Facultative fungal remains from Miocene lignite coal of Neyveli Tamil Nadu, India. Int J Geol Agric Env Sci 2:1–15

    Google Scholar 

  • Naranjo-Ortiz MA, Gabaldón T (2020) Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev 95:1198–1232

    Article  PubMed  Google Scholar 

  • Neergaard P (2017) Seed pathology. Macmillan International Higher Education, London

    Google Scholar 

  • Newey LJ, Caten CE, Green JR (2007) Rapid adhesion of Stagonospora nodorum spores to a hydrophobic surface requires pre-formed cell surface glycoproteins. Mycol Res 111:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  • Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Kõljalg U (2006) Taxonomic reliability of DNA sequences in public sequences databases: a fungal perspective. PLoS ONE 1:e59

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2019a) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109

    Article  CAS  PubMed  Google Scholar 

  • Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K (2019b) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe JMK (2017) Fungal palynomorphs from the Miocene Heath Formation, Tumbes Province, Perú. Palynology 41:309–326

    Article  Google Scholar 

  • Oh Y, Donofrio N, Pan H, Coughlan S, Brown DE, Meng S, Mitchell T, Dean RA (2008) Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol 9:1–24

    Article  Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Otero P (2004) Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 104:581–590

    Article  Google Scholar 

  • Oono R, Lefèvre E, Simha A, Lutzoni F (2015) A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biol 119:917–928

    Article  PubMed  PubMed Central  Google Scholar 

  • Oses R, Valenzuela S, Freer J, Sanfuentes E, Rodriguez J (2008) Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Divers 33:77–86

    Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    Article  CAS  PubMed  Google Scholar 

  • Osono T, Bhatta BK, Takeda H (2004) Phyllosphere fungi on living and decomposing leaves of giant dogwood. Mycoscience 45:35–41

    Article  Google Scholar 

  • Osorio M, Stephan BR (1989) Ascospore germination and appressorium formation in vitro of some species of the Rhytismataceae. Mycol Res 93:439–451

    Article  Google Scholar 

  • Parmar S, Li Q, Wu Y, Li X, Yan J, Sharma VK, Wei Y, Li H (2018) Endophytic fungal community of Dysphania ambrosioides from two heavy metal-contaminated sites: evaluated by culture-dependent and culture-independent approaches. Microb Biotechnol 11:1170–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul NC, Kim WK, Woo SK, Park MS, Yu SH (2006) Diversity of endophytic fungi associated with Taraxacum coreanum and their antifungal activity. Mycobiology 34:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulitz TC, Adams K (2003) Composition and distribution of Pythium communities in wheat fields in eastern Washington State. Phytopathology 93:867–873

    Article  CAS  PubMed  Google Scholar 

  • Paulus BC, Kanowski J, Gadek PA, Hyde KD (2006) Diversity and distribution of saprobic microfungi in leaf litter of an Australian tropical rainforest. Mycol Res 110:1441–1454

    Article  PubMed  Google Scholar 

  • Peace AL, Phethean JJJ, Franke D, Foulger GR, Schiffer C, Welford JK, McHone G, Rocchi S, Schnabel M, Doré AG (2020) A review of Pangaea dispersal and large Igneous Provinces—in search of a causative mechanism. Earth-Science Rev 206:102902

    Article  Google Scholar 

  • Pelaez F, Cabello A, Platas G, Díez MT, del Val AG, Basilio A, Martán I, Vicente F, Bills GF, Giacobbe RA, Schwartz RE, Onishi JC, Meinz MS, Abruzzo GK, Flattery AM, Kong L, Kurtz MB (2000) The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Syst Appl Microbiol 23:333–343

    Article  CAS  PubMed  Google Scholar 

  • Peršoh D (2013) Factors shaping community structure of endophytic fungi-evidence from the PinusViscum-system. Fungal Divers 60:55–69

    Article  Google Scholar 

  • Peršoh D (2015) Plant-associated fungal communities in the light of meta’omics. Fungal Divers 75:1–25

    Article  Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissue. In: Microbiology of the phyllosphere. Cambridge University Press, Cambridge

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, New York

  • Philipson MN, Christey MC (1986) The relationship of host and endophyte during flowering, seed formation, and germination of Lolium perenne. N Z J Bot 24:125–134

    Article  Google Scholar 

  • Phipps CJ, Taylor TN (1996) Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714

    Article  Google Scholar 

  • Phukhamsakda C, Ariyawansa HA, Phillips AJL, Wanasinghe DN, Bhat DJ, McKenzie EH, Singtripop C, Camporesi E, Hyde KD (2016) Additions to Sporormiaceae: introducing two novel genera, Sparticola and Forliomyces, from Spartium. Cryptogam Mycol 37:75–97

    Article  Google Scholar 

  • Phukhamsakda C, McKenzie EHC, Phillips AJL, Jones EBG, Bhat DJ, Stadler M, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, Hyde KD (2020) Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Divers 102:1–203

    Article  Google Scholar 

  • Phukhamsakda C, Nilsson RH, Bhunjun CS, Gomes de Farias AR, Sun YR, Wijesinghe SN, Raza M, Bao DF, Lu L, Tibpromma S, Dong W, Tennakoon DS, Tian XG, Xiong YR, Karunarathna SC, Cai L, Luo ZL, Wang Y, Manawasinghe IS, Camporesi E, Kirk PM, Kuo CH, Su HY, Doilom M, Li Y, Fu YP, Hyde KD (2022) The numbers of fungi: contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Divers 114:327–386

    Article  Google Scholar 

  • Pimm SL, Joppa LN (2015) How many plant species are there, where are they, and at what rate are they going extinct? Ann Missouri Bot Gard 100:170–176

    Article  Google Scholar 

  • Pintos A, Alvarado P (2021) Phylogenetic delimitation of Apiospora and Arthrinium. Fungal Syst Evol 7:197–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirozynski KA (1976) Fossil fungi. Annu Rev Phytopathol 14:237–246

    Article  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164

    Article  CAS  PubMed  Google Scholar 

  • Plett JM, Martin FM (2018) Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant J 93:729–746

    Article  CAS  PubMed  Google Scholar 

  • Podila GK, Rogers LM, Kolattukudy PE (1993) Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol 103:267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pointing SB, Parungao MM, Hyde KD (2003) Production of wood-decay enzymes, mass loss and lignin solubilization in wood by tropical Xylariaceae. Mycol Res 107:231–235

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB, Pelling AL, Smith GJD, Hyde KD, Reddy CA (2005) Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycol Res 109:115–124

    Article  CAS  PubMed  Google Scholar 

  • Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H, Nguyen N, Kjøller R, Bates ST, Baldrian P, Frøslev TG, Tedersoo L (2020) FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers 105:1–16

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  PubMed  Google Scholar 

  • Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T, Natvig DO (2008) Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microbiol 74:2805–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    Article  PubMed  Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99

    Article  Google Scholar 

  • Pryce-Jones E, Carver T, Gurr SJ (1999) The roles of cellulase enzymes and mechanical force in host penetration by Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol 55:175–182

    Article  CAS  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Purmale L, Apine I, Nikolajewa V, Grantina L, Verkley G, Tomsone S (2012) Endophytic fungi in evergreen rhododendron cultivated in vitro and in vivo. Environ Exp Biol 10:1–7

    Google Scholar 

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219

    Article  CAS  PubMed  Google Scholar 

  • Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Riyaz-Ul-Hassan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2:1–14

    Article  Google Scholar 

  • Raja HA, Kaur A, El-Elimat T, Figueroa M, Kumar R, Deep G, Agarwal R, Faeth SH, Cech NB, Oberlies NH (2015) Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle). Mycology 6:8–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashmi M, Kushveer JS, Sarma VV (2019) A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10:798–1079

    Article  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716

    Article  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6:e14823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remy W, Hass H (1996) New information on gametophytes and sporophytes of Aglaophyton major and inferences about possible environmental adaptations. Rev Palaeobot Palynol 90:175–193

    Article  Google Scholar 

  • Remy W, Taylor TN, Hass H (1994) Early Devonian fungi: a blastocladalean fungus with sexual reproduction. Am J Bot 81:690–702

    Article  Google Scholar 

  • Riedel M, Werres S, McKeever K, Shamoun S (2012) Histopathological investigations of the infection process and propagule development of Phytophthora ramorum on Rhododendron leaves. Forest Phytophthoras. https://doi.org/10.5399/osu/fp.2.1.3036

    Article  Google Scholar 

  • Rodrigues KF (1994) The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376–385

    Article  Google Scholar 

  • Rodrigues KF, Samuels GJ (1999) Fungal endophytes of Spondias mombin leaves in Brazil. J Basic Microbiol 39:131–135

    Article  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles: Tansley review. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Gálvez E, Mendgen K (1995) The infection process of Fusarium oxysporum in cotton root tips. Protoplasma 189:61–72

    Article  Google Scholar 

  • Rojas EI, Rehner SA, Samuels GJ et al (2010) Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panamá: multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 102:1318–1338

    Article  PubMed  Google Scholar 

  • Ryder LS, Talbot NJ (2015) Regulation of appressorium development in pathogenic fungi. Curr Opin Plant Biol 26:8–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahni B, Rao HS (1943) A silicified flora from the Intertrappean cherts round Sausar in the Deccan. Proc Natl Acad Sci India 13:36–75

    Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Samarakoon MC, Hyde KD, Maharachchikumbura SSN, Stadler M, Gareth Jones EB, Promputtha I, Suwannarach N, Camporesi E, Bulgakov TS, Liu JK (2022) Taxonomy, phylogeny, molecular dating and ancestral state reconstruction of Xylariomycetidae (Sordariomycetes). Fungal Divers 112:1–88

    Article  Google Scholar 

  • Sánchez Márquez S, Bills GF, Herrero N, Zabalgogeazcoa Í (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5:289–297

    Article  Google Scholar 

  • Sánchez-Torres P, Hinarejos R, Tuset JJ (2009) Characterization and pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Dis 93:1151–1157

    Article  PubMed  Google Scholar 

  • Schardl CL, Liu JS, White JF, Finkel RA, An Z, Siegel MR (1991) Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens. Plant Syst Evol 178:27–41

    Article  CAS  Google Scholar 

  • Schilling JG, Unni CK, Bender ML (1978) Origin of chlorine and bromine in the oceans. Nature 273:631–636

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schulz B (2006) Mutualistic interactions with fungal root endophytes. In: Microbial Root Endophytes. Springer, Berlin

  • Schüßler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244:75–83

    Article  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Libraries at the Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University, Gloucester

  • Selkirk DR (1975) Tertiary fossil fungi from Kiandra, New South Wales. In: Proc Linnean Soc, NSW

  • Senwanna C, Hongsanan S, Phookamsak R, Tibpromma S, Cheewangkoon R, Hyde KD (2019) Muyocopron heveae sp. nov. and M. dipterocarpi appears to have host-jumped to rubber. Mycol Prog 18:741–752

    Article  Google Scholar 

  • Shankar M, Cowling WA, Sweetingham MW (1998) Histological observations of latent infection and tissue colonization by Diaporthe toxica in resistant and susceptible narrow-leafed lupins. Can J Bot 76:1305–1316

    Google Scholar 

  • Sharma N, Kar RK, Agarwal A, Kar R (2005) Fungi in dinosaurian (Isisaurus) coprolites from the Lameta Formation (Maastrichtian) and its reflection on food habit and environment. Micropaleontology 51:73–82

    Article  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Siegel MR, Johnson MC, Varney DR, Nesmith WC, Buckner RC, Bush LP, Burrus PB, Jones TA, Boiling JA (1984) A fungal endophyte in tall fescue: incidence and dissemination. Phytopathology 74:932–937

    Article  Google Scholar 

  • Slater BJ, McLoughlin S, Hilton J (2013) Peronosporomycetes (Oomycota) from a Middle Permian Permineralised Peat within the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica. PLoS ONE 8:e70707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith H, Wingfield MJ, Petrini O (1996) Botryosphaeria dothidea endophytic in Eucalyptus grandis and Eucalyptus nitens in South Africa. For Ecol Manage 89:189–195

    Article  Google Scholar 

  • Steel GS, Dickie IA, Sapsford SJ (2022) A risk to the forestry industry? Invasive pines as hosts of foliar fungi and potential pathogens. N Z J Ecol 46:3471

    Google Scholar 

  • Steiner U, Oerke EC (2007) Localized melanization of appressoria is required for pathogenicity of Venturia inaequalis. Phytopathology 97:1222–1230

    Article  PubMed  Google Scholar 

  • Stone JK, Capitano BR, Kerrigan JL (2008) The histopathology of Phaeocryptopus gaeumannii on Douglas-fir needles. Mycologia 100:431–444

    Article  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strullu-Derrien C, Kenrick P, Rioult JP, Strullu DG (2011) Evidence of parasitic Oomycetes (Peronosporomycetes) infecting the stem cortex of the Carboniferous seed fern Lyginopteris oldhamia. Proc R Soc B Biol Sci 278:675–680

    Article  CAS  Google Scholar 

  • Stubblefield SP, Banks HP (1983) Fungal remains in the Devonian Trimerophyte Psilophyton dawsonii. Am J Bot 70:1258–1261

    Article  Google Scholar 

  • Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95

    Article  Google Scholar 

  • Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6:561–568

    Article  Google Scholar 

  • Suryanarayanan TS, Vijaykrishna D (2001) Fungal endophytes of aerial roots of Ficus benghalensis. Fungal Divers 8:155–161

    Google Scholar 

  • Sutherland BL, Hume DE, Tapper BA (1999) Allelopathic effects of endophyte-infected perennial ryegrass extracts on white clover seedlings. New Zeal J Agric Res 42:19–26

    Article  Google Scholar 

  • Suto Y (2009) Three ascomycetes on leaves of evergreen Ilex trees from Japan: Rhytisma ilicis-integrae sp. nov., R. ilicis-latifoliae, and R. ilicis-pedunculosae sp. nov. Mycoscience 50:357–368

    Article  Google Scholar 

  • Sutton BC (1980) The coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Great Britain

    Google Scholar 

  • Suzuki T, Maeda A, Hirose M, Ichinose Y, Shiraishi T, Toyoda K (2017) Ultrastructural and cytological studies on Mycosphaerella pinodes infection of the model legume Medicago truncatula. Front Plant Sci 8:1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Swenson H (1983) Why Is the ocean salty? Geological Survey, Reston

    Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal Killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    Article  CAS  PubMed  Google Scholar 

  • Taylor TN, Krings M (2005) Fossil microorganisms and land plants: associations and interactions. Symbiosis 40:119–135

    CAS  Google Scholar 

  • Taylor TN, White JF Jr (1989) Fossil fungi (Endogonaceae) from the Triassic of Antarctica. Am J Bot 76:389–396

    Article  Google Scholar 

  • Taylor TN, Hass H, Remy W (1992) Devonian fungi: interactions with the green alga Palaeonitella. Mycologia 84:901–910

    Article  Google Scholar 

  • Taylor TN, Remy W, Haas H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560–573

    Article  Google Scholar 

  • Taylor TN, Klavins SD, Krings M et al (2004) Fungi from the Rhynie chert: a view from the dark side. Trans R Soc Edinburgh, Earth Sci 94:457–473

    Article  Google Scholar 

  • Taylor TN, Kerp H, Hass H (2005) Life history biology of early land plants: deciphering the gametophyte phase. Proc Natl Acad Sci USA 102:5892–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany. In: The biology and evolution of fossil plants, 2nd edn. Elsevier Academic Press, New York

  • Tedersoo L, Anslan S, Bahram M, Kõljalg U, Abarenkov K (2020) Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. Fungal Divers 103:273–293

    Article  Google Scholar 

  • Tedersoo L, Mikryukov V, Anslan S, Bahram M, Khalid AN, Corrales A, Agan A, Vasco-Palacios AM, Saitta A, Antonelli A, Rinaldi AC, Verbeken A, Sulistyo BP, Tamgnoue B, Furneaux B, Ritter CD, Nyamukondiwa C, Sharp C, Marín C, Dai DQ, Gohar D, Sharmah D, Biersma EM, Cameron EK, Crop ED, Otsing E, Davydov EA, Albornoz FE, Brearley FQ, Buegger F, Gates G, Zahn G, Bonito G, Hiiesalu I, Hiiesalu I, Zettur I, Barrio IC, Pärn J, Heilmann-Clausen J, Ankuda J, Kupagme JY, Sarapuu J, Maciá-Vicente JG, Fovo JD, Geml J, Alatalo JM, Alvarez-Manjarrez J, Monkai J, Põldmaa K, Runnel K, Adamson K, Bråthen KA, Pritsch K, Tchan KI, Armolaitis K, Hyde KD, Newsham KK, Panksep K, Adebola LA, Lamit LJ, Saba M, da Silva Cáceres ME, Tuomi M, Gryzenhout M, Bauters M, Bálint M, Wijayawardene N, Hagh-Doust N, Yorou NS, Kurina O, Mortimer PE, Meidl P, Nilsson RH, Puusepp R, Casique-Valdés R, Drenkhan R, Garibay-Orijel R, Godoy R, Alfarraj S, Rahimlou S, Põlme S, Dudov SV, Mundra S, Ahmed T, Netherway T, Henkel TW, Roslin T, Fedosov VE, Onipchenko VG, Yasanthika E, Lim YW, Piepenbring M, Klavina D, Kõljalg U, Abarenkov K (2021) The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers 111:573–588

    Article  Google Scholar 

  • Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738

    Article  CAS  PubMed  Google Scholar 

  • Tibpromma S, Hyde KD, Bhat JD, Mortimer PE, Xu J, Promputtha I, Doilom M, Yang JB, Tang AM, Karunarathna SC (2020) Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 33:25–67

    Article  Google Scholar 

  • Triolet M, Edel-Hermann V, Gautheron N, Mondy S, Reibel C, André O, Guillemin JP, Steinberg C (2022) Weeds harbor an impressive diversity of fungi, which offers possibilities for biocontrol. Appl Environ Microbiol 88:e02177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U’Ren JM, Riddle JM, Monacell JT, Carbone I, Miadlikowska J, Arnold AE (2014) Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi. Mol Ecol Resour 14:1032–1048

    Article  PubMed  Google Scholar 

  • Varvas T, Kasekamp K, Kullman B (2013) Preliminary study of endophytic fungi in timothy (Phleum pratense) in Estonia. Acta Mycol 48:41–49

    Article  Google Scholar 

  • Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold E (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3:122–138

    Article  Google Scholar 

  • Viret O, Petrini O (1994) Colonization of beech leaves (Fagus sylvatica) by the endophyte Discula umbrinella (teleomorph: Apiognomonia errabunda). Mycol Res 98:423–432

    Article  Google Scholar 

  • Vishnu A, Khan MA, Bera M, Dilcher DL, Bera S (2017) Fossil Asterinaceae in the phyllosphere of the eastern Himalayan Neogene Siwalik forest and their palaeoecological significance. Bot J Linn Soc 185:1–54

    Google Scholar 

  • Wagner CA, Taylor TN (1981) Evidence for endomycorrhizae in Pennsylvanian age plant fossils. Science 212:562–563

    Article  CAS  PubMed  Google Scholar 

  • Wagner CA, Taylor TN (1982) Fungal chlamydospores from the Pennsylvanian of North America. Rev Palaeobot Palynol 37:317–328

    Article  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber RWS, Stenger E, Meffert A, Hahn M (2004) Brefeldin A production by Phoma medicaginis in dead pre-colonized plant tissue: a strategy for habitat conquest? Mycol Res 108:662–671

    Article  CAS  PubMed  Google Scholar 

  • Weber RWS, Anke H (2006) Effects of endophytes on colonisation by leaf surface microbiota. In: Microbial Ecology of aerial plant surfaces. CABI, Wallingford

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • White JF, Taylor TN (1988) Triassic fungus from Antarctica with possible ascomycetous affinities. Am J Bot 75:1495–1500

    Article  Google Scholar 

  • Willis KJ (2018) State of the World’s Fungi 2018. Royal Botanic Gardens, Kew

    Google Scholar 

  • Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M (2019) Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10:127–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie L, Wen J, Li LQ (2011) Phylogenetic analyses of Clematis (Ranunculaceae) based on sequences of nuclear ribosomal ITS and three plastid regions. Syst Bot 36:907–921

    Article  Google Scholar 

  • Yang CL, Xu XL, Dong W, Wanasinghe DN, Liu YG, Hyde KD (2019) Introducing Arthrinium phyllostachium sp. nov. (Apiosporaceae, Xylariales) on Phyllostachys heteroclada from Sichuan Province, China. Phytotaxa 406:91–110

    Article  Google Scholar 

  • Yeh Y (1980) Sorghum downy mildew: biology of systemic infection by conidia and of a resistant response in Sorghum. Phytopathology 70:372–376

    Article  Google Scholar 

  • Zhang T, Yao YF (2015) Endophytic fungal communities associated with vascular plants in the high arctic zone are highly diverse and host-plant specific. PLoS ONE 10:e0130051

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Hyde KD (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457

    Article  Google Scholar 

  • Zipfel C, Oldroyd GED (2017) Plant signalling in symbiosis and immunity. Nature 543:328–336

    Article  CAS  PubMed  Google Scholar 

  • Zúñiga E, Romero J, Ollero-Lara A, Lovera M, Arquero O, Miarnau X, Torguet L, Trapero A, Luque J (2020) Inoculum and infection dynamics of Polystigma amygdalinum in almond orchards in Spain. Plant Dis 104:1239–1246

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Chitrabhanu Bhunjun would like to thank Prof. Marc Stadler for his valuable comments. This research was funded by the Thailand Research Fund, grant RDG6130001, titled “Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion”. Kevin D. Hyde would like to thank the National Research Council of Thailand (NRCT) grant “Total fungal diversity in a given forest area with implications towards species numbers, chemical diversity and biotechnology” (grant no. N42A650547). Chayanard Phukhamsakda would like to thank the National Natural Science Foundation of China (NSFC) for granting a Youth Science Fund Project (number 32100007). Ramesh K. Saxena is grateful to the authorities of the Birbal Sahni Institute of Palaeosciences, Lucknow, India for library facilities. Qirui Li is thankful to the National Natural Science Foundation of China (31960005 and 32000009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirui Li.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Consent to participate

All authors have agreed to participate in this research.

Consent for publication

All authors have read and approved the submitted manuscript.

Additional information

Handling Editor: Artur Alves.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunjun, C.S., Phukhamsakda, C., Hyde, K.D. et al. Do all fungi have ancestors with endophytic lifestyles?. Fungal Diversity 125, 73–98 (2024). https://doi.org/10.1007/s13225-023-00516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-023-00516-5

Keywords

Navigation