Skip to main content
Log in

The Global Soil Mycobiome consortium dataset for boosting fungal diversity research

  • Published:
Fungal Diversity Aims and scope Submit manuscript


Fungi are highly important biotic components of terrestrial ecosystems, but we still have a very limited understanding about their diversity and distribution. This data article releases a global soil fungal dataset of the Global Soil Mycobiome consortium (GSMc) to boost further research in fungal diversity, biogeography and macroecology. The dataset comprises 722,682 fungal operational taxonomic units (OTUs) derived from PacBio sequencing of full-length ITS and 18S-V9 variable regions from 3200 plots in 108 countries on all continents. The plots are supplied with geographical and edaphic metadata. The OTUs are taxonomically and functionally assigned to guilds and other functional groups. The entire dataset has been corrected by excluding chimeras, index-switch artefacts and potential contamination. The dataset is more inclusive in terms of geographical breadth and phylogenetic diversity of fungi than previously published data. The GSMc dataset is available over the PlutoF repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The GSMc OTU-by-sample dataset is available from the PlutoF data repository ( in six files: information file, OTU matrix in spreadsheet format, sample metadata (equivalent to Table S1), taxonomic and functional description of OTUs, OTU sequences in FASTA format, as well as data in Biological Observation Matrix (BIOM) format. Representative sequences of identical sequences per sample will be available from the UNITE database.

Code availability

The scripts used for the bioinformatic analysis are available at GitHub:


  • Asplund J, Wardle DA (2017) How lichens impact on terrestrial community and ecosystem properties. Biol Rev 92:1720–1738

  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Tedersoo L, Bork P (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P, Vetrovsky T, Lepinay C, Kohout P (2021) High-throughput sequencing view on the magnitude of global fungal diversity. Fung Divers

  • Balint M, Bahram M, Eren AM, Faust K, Fuhrman JA, Lindahl B, O’Hara RB, Öpik M, Sogin ML, Unterseher M, Tedersoo L (2016) Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiol Rev 40:686–700

    Article  PubMed  CAS  Google Scholar 

  • Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, Breed MF, Brown B, Brown MV, Brugger J, Byrne M (2016) Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience 18:21

    Article  Google Scholar 

  • Bunge J, Willis A, Walsh F (2014) Estimating the number of species in microbial diversity studies. Annu Rev Stat Appl 1:427–445

    Article  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  Google Scholar 

  • Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Ba A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Moora M, Semchenko M, Adenan SB, Ahmed T, Akhmetzhanova AA, Alatalo JM, Al-Quraishy S, Andriyanova E, Anslan S, Bahram M (2021) Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol 231:763–776

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482

    Article  PubMed  CAS  Google Scholar 

  • Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK (2019) A few Ascomycota taxa dominate soil fungal communities worldwide. Nature Commun 10:2369

    Article  Google Scholar 

  • Garnica S, Schön ME, Abarenkov K, Riess K, Liimatainen K, Niskanen T, Dima B, Soop K, Frøslev TG, Jeppesen TS, Peintner U (2016) Determining threshold values for barcoding fungi: lessons from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiol Ecol 92:fiw045

    Article  PubMed  Google Scholar 

  • Guerra CA, Bardgett RD, Caon L, Crowther TW, Delgado-Baquerizo M, Montanarella L, Navarro LM, Orgiazzi A, Singh BK, Tedersoo L, Vargas-Rojas R (2021) Tracking, targeting and conserving soil biodiversity. Science 371:239–241

    Article  PubMed  CAS  Google Scholar 

  • Heeger F, Wurzbacher C, Bourne EC, Mazzoni CJ, Monaghan MT (2019) Combining the 5.8S and ITS2 to improve classification of fungi. Methods Ecol Evol 10:1702–1711

    Article  Google Scholar 

  • Joos L, Beirinckx S, Haegeman A, Debode J, Vandecasteele B, Baeyen S, Goormachtig S, Clement L, De Tender C (2020) Daring to be differential: metabarcoding analysis of soil and plant-related microbial communities using amplicon sequence variants and operational taxonomical units. BMC Genomics 21:733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindahl B, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nutrient uptake in a boreal forest. New Phytol 173:611–620

    Article  PubMed  CAS  Google Scholar 

  • Lindner DL, Carlsen T, Nilsson RH, Davey M, Schumacher T, Kauserud H (2013) Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi. Ecol Evol 3:1751–1764

    Article  PubMed  PubMed Central  Google Scholar 

  • Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Singh BK (2015) Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci USA 112:15684–15689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E, Hartmann M, Schoch CL, Nylander JAA, Bergsten J, Porter TM, Jumpponen A, Vaishampayan P, Ovaskainen O, Hallenberg N, Bengtsson-Palme J, Eriksson KM, Larsson K-H, Larsson E, Kõljalg U (2012) Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4:37–63

    Article  Google Scholar 

  • Nilsson RH, Larsson KH, Taylor AF, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Kõljalg SI (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucl Acids Res 47:D259–D264

    Article  PubMed  CAS  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GWN, Underwood EC, Damico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the World: a new map of life on earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Ondov BD, Bergman NH, Philippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinform 12:385

    Article  Google Scholar 

  • Põlme S, Abarenkov K, Nilsson RH, Lindahl BD, Clemmensen KE, Kauserud H, Nguyen N, Kjøller R, Bates ST, Baldrian P, Tedersoo L (2020) FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fung Divers 105:1–16

    Article  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41:D590–D596

    Article  PubMed  CAS  Google Scholar 

  • Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD (2018) ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7:1418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato MP, Ogura Y, Nakamura K, Nishida R, Gotoh Y, Hayashi M, Hisatsune J, Sugai M, Takehiko I, Hayashi T (2019) Comparison of the sequencing bias of currently available library preparation kits for Illumina sequencing of bacterial genomes and metagenomes. DNA Res 26:391–398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen W, Le S, Li Y, Hu F (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11:e0163962

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Tedersoo L, Anslan S (2019) Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences. Environ Microbiol Rep 11:659–668

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, Lindahl B (2016) Fungal identification biases in microbiome projects. Environ Microbiol Rep 8:774–779

    Article  PubMed  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Villarreal-Ruiz L, Vasco-Palacios A, Quang Thu P, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Ratkowsky D, Pritsch K, Riit T, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1078

    Article  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Puusepp R, Nilsson RH, James TY (2017) Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome 5:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018a) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fung Divers 90:135–159

    Article  Google Scholar 

  • Tedersoo L, Tooming-Klunderud A, Anslan S (2018b) PacBio metabarcoding of fungi and other eukaryotes: biases and perspectives. New Phytol 217:1370–1385

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M, Drenkhan R, Pritsch K, Buegger F, Padari A, Hagh-Doust N, Mikryukov V, Kõljalg U, Abarenkov K (2020a) Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front Microbiol 11:1953

    Article  PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M, Kõljalg U, Abarenkov K (2020b) Identifying the ‘unidentified’fungi: a global-scale long-read third-generation sequencing approach. Fung Divers 103:273–293

    Article  Google Scholar 

  • Tedersoo L, Albertsen M, Anslan S, Callahan B (2021) Perspectives and benefits of high-throughput long-read sequencing in microbial ecology. Appl Environ Microbiol 87:e00626-e721

    Article  CAS  PubMed Central  Google Scholar 

  • Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897

    Article  Google Scholar 

  • Vetrovsky T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, Brabcová V, Choi J, Meszárošová L, Human ZR, Lepinay C, Baldrian P (2019) A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun 10:1–9

    Article  Google Scholar 

  • Vetrovsky T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D’Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Michalčíková L, Michalová T, Mundra S, Navrátilová D, Odriozola I, Piché-Choquette S, Štursová M, Švec K, Tláskal V, Urbanová M, Vlk L, Voříšková J, Žifčáková L, Baldrian P (2020) GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 7:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CH, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wijayawardene NN, Hyde KD, Al-Ani LK, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev D, Saxena RK, Tokarev YS (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11:1060–1456

    Article  Google Scholar 

  • Xu X, Wang N, Lipson D, Sinsabaugh R, Schimel J, He L, Soudzilovskaia NA, Tedersoo L (2020) Microbial macroecology: In search of mechanisms governing microbial biogeographic patterns. Glob Ecol Biogeogr 29:1870–1886

    Article  Google Scholar 

  • Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell W, Crowther TW, Moreno HF (2020) Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol Rev 95:409–433

    Article  PubMed  Google Scholar 

Download references


We Thank Liis Tiirmann for assistance during manuscript preparation and multiple students for assistance in sample and metadata collection. We also thank two anonymous referees for their constructive suggestions.


The bulk of this work was supported by the Estonian Science Foundation (Grant Nos. PRG632, PSG136, MOBTP198, PUT1170), Norway-Baltic EEA financial mechanism (Grant No. EMP442), RSF19-14-00038, DSFP-2021 and Novo Nordisk Fonden (Silva Nova).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Leho Tedersoo.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare related to this study.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors give their consent to publish this study in Fungal Diversity.

Additional information

Handling Editor: Jian-Kui Liu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 688 KB)

Table S1 Metadata of plots. Only the 3200 plots with available data are indicated.

Supplementary file2 (XLSX 13 KB)

Table S2 Sequences of barcodes and forward and reverse primers used in the current study.

Supplementary file3 (XLSX 18 KB)

Table S3 Taxon-specific e-value thresholds used for taxonomic assignments of OTUs with BLAST.

Supplementary file4 (PDF 230 KB)

Item S1 Sampling protocol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedersoo, L., Mikryukov, V., Anslan, S. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity 111, 573–588 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: