Skip to main content

High-throughput sequencing view on the magnitude of global fungal diversity

Abstract

High-throughput DNA sequencing has dramatically transformed several areas of biodiversity research including mycology. Despite limitations, high-throughput sequencing is nowadays a predominant method to characterize the alpha and beta diversity of fungal communities. Across the papers utilizing high-throughput sequencing approaches to study natural habitats in terrestrial ecosystems worldwide, > 200 studies published until 2019 have generated over 250 million sequences of the primary mycological metabarcoding marker, the nuclear ribosomal internal transcribed spacer 2 (ITS2). Here we show that at a 97% sequence similarity threshold, the total richness of non-singleton fungal taxa across the studies published so far is 1.08 million, mostly Ascomycota (56.8% of the taxa) and Basidiomycota (36.7% of the taxa). The Chao-1 estimate of the total extant fungal diversity based on this dataset is 6.28 million taxa, representing a conservative estimate of global fungal species richness. Soil and litter represent the habitats with the highest alpha diversity of fungi followed by air, plant shoots, plant roots and deadwood with Chao-1 predictions, for samples containing 5000 sequences, of 1219, 569, 392, 228, 215 and 140 molecular species, respectively. Based on the high-throughput sequencing data, the highest proportion of unknown fungal species is associated with samples of lichen and plant tissues. When considering the use of high-throughput sequencing for the estimation of global fungal diversity, the limitations of the method have to be taken into account, some of which are sequencing platform-specific while others are inherent to the metabarcoding approaches of species representation. In this respect, high-throughput sequencing data can complement fungal diversity predictions based on methods of traditional mycology and increase our understanding of fungal biodiversity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

All data is publicly available in the GlobalFungi database (https://globalfungi.com).

References

  • Amend AS, Seifert KA, Samson R, Bruns TD (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci USA 107(31):13748–13753. https://doi.org/10.1073/pnas.1000454107

    Article  PubMed  PubMed Central  Google Scholar 

  • Anslan S, Nilsson RH, Wurzbacher C, Baldrian P, Tedersoo L, Bahram M (2018) Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding. MycoKeys 39:29–40. https://doi.org/10.3897/mycokeys.39.28109

    Article  Google Scholar 

  • Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205(4):1454–1463. https://doi.org/10.1111/nph.13206

    CAS  Article  PubMed  Google Scholar 

  • Baldrian P, Kolařík M, Štursová M, Kopecký J, Valášková V, Větrovský T, Žifčáková L, Šnajdr J, Rídl J, Vlček Č, Voříšková J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6(2):248–258. https://doi.org/10.1038/ismej.2011.95

    CAS  Article  PubMed  Google Scholar 

  • Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sanchez-Garcia M, Ebersberger I, de Sousa F, Amend AS, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4(10):914–919. https://doi.org/10.1111/2041-210x.12073

    Article  Google Scholar 

  • Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond B Biol Sci 360(1462):1935–1943. https://doi.org/10.1098/rstb.2005.1725

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184(2):449–456. https://doi.org/10.1111/j.1469-8137.2009.03003.x

    CAS  Article  PubMed  Google Scholar 

  • Castano C, Berlin A, Durling MB, Ihrmark K, Lindahl BD, Stenlid J, Clemmensen KE, Olson A (2020) Optimized metabarcoding with Pacific biosciences enables semi-quantitative analysis of fungal communities. New Phytol 228(3):1149–1158. https://doi.org/10.1111/nph.16731

    CAS  Article  Google Scholar 

  • Chao A, Ma KH, Hsieh TC, Chiu CH (2016) SpadeR: Species-Richness Prediction and Diversity Estimation with R. https://chao.shinyapps.io/SpadeR/.

  • Davison J, Moora M, Opik M, Adholeya A, Ainsaar L, Ba A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Partel M, Reier U, Saks U, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349(6251):970–973. https://doi.org/10.1126/science.aab1161

    CAS  Article  PubMed  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604

    CAS  Article  PubMed  Google Scholar 

  • Glass DJ, Takebayashi N, Olson LE, Taylor DL (2013) Evaluation of the authenticity of a highly novel environmental sequence from boreal forest soil using ribosomal RNA secondary structure modeling. Mol Phylogenet Evol 67(1):234–245. https://doi.org/10.1016/j.ympev.2013.01.018

    CAS  Article  PubMed  Google Scholar 

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectrum 5(4):4. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

    Article  Google Scholar 

  • Hyde KD, Jeewon R, Chen Y-J, Bhunjun CS, Calabon MS, Jiang H-B, Lin C-G, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu J-K, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Gareth Jones EB, Lumyong S (2020) The numbers of fungi: is the descriptive curve flattening? Fungal Divers 103(1):219–271. https://doi.org/10.1007/s13225-020-00458-2

    Article  Google Scholar 

  • Ihrmark K, Bodeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandstrom-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region: evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82(3):666–677. https://doi.org/10.1111/j.1574-6941.2012.01437.x

    CAS  Article  PubMed  Google Scholar 

  • Kohout P, Sudova R, Janouskova M, Ctvrtlikova M, Hejda M, Pankova H, Slavikova R, Stajerova K, Vosatka M, Sykorova Z (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal solution? Soil Biol Biochem 68:482–493. https://doi.org/10.1016/j.soilbio.2013.08.027

    CAS  Article  Google Scholar 

  • Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Duenas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Luecking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Poldmaa K, Saag L, Saar I, Schuessler A, Scott JA, Senes C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22(21):5271–5277. https://doi.org/10.1111/mec.12481

    CAS  Article  PubMed  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers: a user’s guide. New Phytol 199(1):288–299

    CAS  Article  Google Scholar 

  • Lindner DL, Carlsen T, Nilsson RH, Davey M, Schumacher T, Kauserud H (2013) Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi. Ecol Evol 3(6):1751–1764. https://doi.org/10.1002/ece3.586

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu XZ, Wang QM, Goker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147. https://doi.org/10.1016/j.simyco.2015.12.001

    Article  PubMed  Google Scholar 

  • Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, Yynez-Ayabaca A, Chaves JL, Coca LF, Lawrey JD (2014) A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci USA 111(30):11091–11096. https://doi.org/10.1073/pnas.1403517111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2019a) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17(2):95–109. https://doi.org/10.1038/s41579-018-0116-y

    CAS  Article  PubMed  Google Scholar 

  • Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glockner FO, Tedersoo L, Saar I, Koljalg U, Abarenkov K (2019b) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47(D1):D259–D264. https://doi.org/10.1093/nar/gky1022

    CAS  Article  PubMed  Google Scholar 

  • Nilsson RH, Wurzbacher C, Bahram M, Coimbra VRM, Larsson E, Tedersoo L, Eriksson J, Ritter CD, Svantesson S, Sanchez-Garcia M, Ryberg M, Kristiansson E, Abarenkov K (2016) Top 50 most wanted fungi. MycoKeys 12:29–40. https://doi.org/10.3897/mycokeys.12.7553

    Article  Google Scholar 

  • Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14(7):434–447. https://doi.org/10.1038/nrmicro.2016.59

    CAS  Article  PubMed  Google Scholar 

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405(6783):212–219. https://doi.org/10.1038/35012221

    CAS  Article  PubMed  Google Scholar 

  • Ryberg M, Nilsson RH, Kristiansson E, Töpel M, Jacobsson S, Larsson E (2008) Mining metadata from unidentified ITS sequences in GenBank: a case study in Inocybe (Basidiomycota). BMC Evol Biol 8:50. https://doi.org/10.1186/1471-2148-8-50

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Seibold S, Müller J, Baldrian P, Cadotte MW, Štursová M, Biedermann PHW, Krah F-S, Bässler C (2019) Fungi associated with beetles dispersing from dead wood: let’s take the beetle bus! Fungal Ecol 39:100–108. https://doi.org/10.1016/j.funeco.2018.11.016

    Article  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6(12):14. https://doi.org/10.1371/journal.pone.0027310

    CAS  Article  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado R, Dentinger B, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera G, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EB, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovacs GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-Ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SS, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul T, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FO, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D, Fungal Barcoding C (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109(16):6241–6246. https://doi.org/10.1073/pnas.1117018109

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith DP, Peay KG (2014) Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9:e90234. https://doi.org/10.1371/journal.pone.0090234

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Stockinger H, Kruger M, Schussler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187(2):461–474. https://doi.org/10.1111/j.1469-8137.2010.03262.x

    CAS  Article  PubMed  Google Scholar 

  • Štursova M, Bárta J, Šantručková H, Baldrian P (2016) Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol Ecol 92(12):185. https://doi.org/10.1093/femsec-fiw185

    Article  Google Scholar 

  • Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao H-L, Smith ME, Peay KG (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci USA 111(17):6341–6346. https://doi.org/10.1073/pnas.1402584111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M, Drenkhan R, Pritsch K, Buegger F, Padari A, Hagh-Doust N, Mikryukov V, Gohar D, Amiri R, Hiiesalu I, Lutter R, Rosenvald R, Rähn E, Adamson K, Drenkhan T, Tullus H, Jürimaa K, Sibul I, Otsing E, Põlme S, Metslaid M, Loit K, Agan A, Puusepp R, Varik I, Kõljalg U, Abarenkov K (2020a) Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front Microbiol 11:1953. https://doi.org/10.3389/fmicb.2020.01953

    Article  PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M, Kõljalg U, Abarenkov K (2020b) Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. Fungal Divers 103(1):273–293. https://doi.org/10.1007/s13225-020-00456-4

    Article  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M, Polme S, Riit T, Liiv I, Koljalg U, Kisand V, Nilsson RH, Hildebrand F, Bork P, Abarenkov K (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43. https://doi.org/10.3897/mycokeys.10.4852

    Article  Google Scholar 

  • Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Partel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346(6213):1256688. https://doi.org/10.1126/science.1256688

    CAS  Article  PubMed  Google Scholar 

  • Tedersoo L, Lindahl B (2016) Fungal identification biases in microbiome projects. Environ Microbiol Rep 8(5):774–779. https://doi.org/10.1111/1758-2229.12438

    Article  PubMed  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018a) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90(1):135–159. https://doi.org/10.1007/s13225-018-0401-0

    Article  Google Scholar 

  • Tedersoo L, Tooming-Klunderud A, Anslan S (2018b) PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. New Phytol 217(3):1370–1385. https://doi.org/10.1111/nph.14776

    CAS  Article  PubMed  Google Scholar 

  • Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y, González A, Morton JT, Mirarab S, Zech XZ, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin Song S, Kosciolek T, Bokulich NA, Lefler J, Brislawn CJ, Humphrey G, Owens SM, Hampton-Marcell J, Berg-Lyons D, McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens RL, Shade A, Pollard KS, Goodwin KD, Jansson JK, Gilbert JA, Knight R (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463. https://doi.org/10.1038/nature24621

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49(8):1027–1037. https://doi.org/10.1007/s00374-013-0801-y

    Article  Google Scholar 

  • Větrovský T, Baldrian P, Morais D (2018) SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34(13):2292–2294. https://doi.org/10.1093/bioinformatics/bty071

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, Brabcová V, Choi J, Meszárošová L, Human ZR, Lepinay C, Lladó S, Lopez-Mondejar R, Martinovic T, Mašínová T, Morais D, Navrátilová D, Odriozola I, Štursová M, Švec K, Tláskal V, Urbanová M, Wan J, Žifčáková L, Howe A, Ladau J, Peay KG, Storch D, Wild J, Baldrian P (2019) A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun 10(1):5142. https://doi.org/10.1038/s41467-019-13164-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol Ecol Resour 16(2):388–401. https://doi.org/10.1111/1755-0998.12456

    CAS  Article  PubMed  Google Scholar 

  • Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D’Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Michalčíková L, Michalová T, Mundra S, Navrátilová D, Odriozola I, Piché-Choquette S, Štursová M, Švec K, Tláskal V, Urbanová M, Vlk L, Voříšková J, Žifčáková L, Baldrian P (2020) GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 7(1):228. https://doi.org/10.1038/s41597-020-0567-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlk L, Tedersoo L, Antl T, Větrovský T, Abarenkov K, Pergl J, Albrechtová J, Vosátka M, Baldrian P, Pyšek P, Kohout P (2020) Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites. ISME J 14(9):2336–2346. https://doi.org/10.1038/s41396-020-0692-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang RH, Su JH, Shang JJ, Wu YY, Li Y, Bao DP, Yao YJ (2018) Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS ONE 13(10):206428. https://doi.org/10.1371/journal.pone.0206428

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (18-26191S).

Funding

Czech Science Foundation, Project No. 18-26191S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Baldrian.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baldrian, P., Větrovský, T., Lepinay, C. et al. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity 114, 539–547 (2022). https://doi.org/10.1007/s13225-021-00472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-021-00472-y

Keywords

  • High-throughput sequencing
  • Metabarcoding
  • Internal transcribed spacer
  • Alpha diversity
  • Meta-analysis