Skip to main content

Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed)

Abstract

This article provides morphological descriptions and illustrations of microfungi associated with the invasive weed, Chromolaena odorata, which were mainly collected in northern Thailand. Seventy-seven taxa distributed in ten orders, 23 families (of which Neomassarinaceae is new), 12 new genera (Chromolaenicola, Chromolaenomyces, Longiappendispora, Pseudocapulatispora, Murichromolaenicola, Neoophiobolus, Paraleptospora, Pseudoroussoella, Pseudostaurosphaeria, Pseudothyridariella, Setoarthopyrenia, Xenoroussoella), 47 new species (Aplosporella chromolaenae, Arthrinium chromolaenae, Chromolaenicola chiangraiensis, C. lampangensis, C. nanensis, C. thailandensis, Chromolaenomyces appendiculatus, Diaporthe chromolaenae, Didymella chromolaenae, Dyfrolomyces chromolaenae, Leptospora chromolaenae, L. phraeana, Longiappendispora chromolaenae, Memnoniella chromolaenae, Montagnula chiangraiensis, M. chromolaenae, M. chromolaenicola, M. thailandica, Murichromolaenicola chiangraiensis, M. chromolaenae, Muyocopron chromolaenae, M. chromolaenicola, Neomassarina chromolaenae, Neoophiobolus chromolaenae, Neopyrenochaeta chiangraiensis, N. chromolaenae, N. thailandica, N. triseptatispora, Nigrograna chromolaenae, Nothophoma chromolaenae, Paraleptospora chromolaenae, P. chromolaenicola, Patellaria chromolaenae, Pseudocapulatispora longiappendiculata, Pseudoroussoella chromolaenae, Pseudostaurosphaeria chromolaenae, P. chromolaenicola, Pseudothyridariella chromolaenae, Pyrenochaetopsis chromolaenae, Rhytidhysteron chromolaenae, Setoarthopyrenia chromolaenae, Sphaeropsis chromolaenicola, Tremateia chiangraiensis, T. chromolaenae, T. thailandensis, Xenoroussoella triseptata, Yunnanensis chromolaenae), 12 new host records, three new taxonomic combinations (Chromolaenicola siamensis, Pseudoroussoella elaeicola, Pseudothyridariella mahakashae), and two reference specimens (Torula chromolaenae, T. fici) are described and illustrated. Unlike some other hosts, e.g. bamboo (Poaceae) and Pandanaceae, the dominant group of fungi on Siam weed were Dothideomycetes. Only 15 species previously recorded from northern Thailand were found in this study. Most of the taxa are likely to have jumped hosts from surrounding plants and are unlikely to be a specialist to Siam weed. Most fungal families found on Siam weed had divergence estimates with stem ages in the Cretaceous, which coincided with the expected origin of the host family (Asteraceae). This further indicates that the species have jumped hosts, as it is unlikely that the taxa on the alien Siam weed came from the Americas with its host. They may, however, have jumped from other Asteraceae hosts. In a preliminary screening 40 (65%) of the 62 species tested showed antimicrobial activity and thus, the fungi associated with C. odorata may be promising sources of novel bioactive compound discovery. We provide a checklist of fungi associated with C. odorata based on the USDA Systematic Mycology and Microbiology Laboratory (SMML) database, relevant literature and our study. In total, 130 taxa (116 identified and 14 unidentified species) are distributed in 20 orders, 48 families, and 85 genera. Pseudocercospora is the most commonly encountered genus on Siam weed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85
Fig. 86
Fig. 87
Fig. 88
Fig. 89
Fig. 90
Fig. 91
Fig. 92
Fig. 93
Fig. 94
Fig. 95
Fig. 96
Fig. 97
Fig. 98
Fig. 99
Fig. 100
Fig. 101
Fig. 102
Fig. 103
Fig. 104
Fig. 105
Fig. 106
Fig. 107
Fig. 108
Fig. 109
Fig. 110
Fig. 111
Fig. 112
Fig. 113
Fig. 114
Fig. 115
Fig. 116
Fig. 117
Fig. 118
Fig. 119
Fig. 120
Fig. 121
Fig. 122
Fig. 123
Fig. 124
Fig. 125
Fig. 126
Fig. 127
Fig. 128
Fig. 129
Fig. 130
Fig. 131
Fig. 132
Fig. 133
Fig. 134
Fig. 135
Fig. 136
Fig. 137
Fig. 138
Fig. 139
Fig. 140
Fig. 141
Fig. 142

References

  • Aba PE, Joshua PE, Ezeonuogu FC et al (2015) Possible anti-diarrhoeal potential of ethanol leaf extract of Chromolaena odorata in castor oil-induced rats. J Complement Integr Med 12:301–306

    PubMed  Article  Google Scholar 

  • Abbasi AM, Khan MA, Ahmad M et al (2010) Ethnobotanical study of wound healing herbs among the tribal communities in Northern Himalaya Ranges district Abbottabad, Pakistan. Pak J Bot 42:3747–3753

    Google Scholar 

  • Abdel-Wahab F (2017) Natural products of Nothophoma multilocularis sp. nov. an endophyte of the medicinal plant Rhazya stricta. Mycosphere 8:1185–1200

    Article  Google Scholar 

  • Adedapo AA, Oyagbemi AA, Fagbohun OA et al (2016) Evaluation of the anticancer properties of the methanol leaf extract of Chromolaena odorata on HT29 lung cancer cell line. FASEB J 30:1193.6

    Google Scholar 

  • Agunbiade FO, Fawale AT (2009) Use of Siam weed biomarker in assessing heavy metal contaminations in traffic and solid waste polluted areas. Int J Environ Sci Technol 6:267–276

    CAS  Article  Google Scholar 

  • Ahmadpour SA, Farokhinejad R, Mehrabi-Koushki M (2017) Further characterization and pathogenicity of Didymella microchlamydospora causing stem necrosis of Morus nigra in Iran. Mycosphere 8:835–852

    Article  Google Scholar 

  • Ahmed SA, van de Sande WWJ, Stevens DA et al (2014) Revision of agents of black-grain eumycetoma in the order Pleosporales. Persoonia 33:141–154

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ahmed SA, González GM, Tirado-Sánchez A et al (2018) Nigrograna mackinnonii, Not Trematosphaeria grisea (syn., Madurella grisea), is the main agent of black grain eumycetoma in Latin America. J Clin Microbiol 56:e01723

    PubMed  PubMed Central  Google Scholar 

  • Akinmoladun AC, Ibukun EO, Dan Ologe IA (2007) Phytochemical constituents and antioxidant properties of extracts from the leaves of Chromolaena odorata. Sci Res Essay 2:191–194

    Google Scholar 

  • Alcorn JL, Irwin JAG (1987) Acrocalymma medicaginis gen. et sp. nov. causing root and crown rot of Medicago sativa in Australia. Trans Br Mycol Soc 88:163–167

    Article  Google Scholar 

  • Amazu LU, Omoregie P, Ajuwo AO, Ifezulike CC (2013) Anticonvulsant potency of the leaf extract of Chromolaena odorata in rats. Unique Res J Med Med Sci 1:64–69

    Google Scholar 

  • Anolifo GO, Vwioko DE (2001) Tolerance of Chromolaena odorata (L) K. and R. grown in soil contaminated with spent lubricating oil. J Trop Biosci 1:20–24

    Google Scholar 

  • Aptroot A (2004) Two new ascomycetes with long gelatinous appendages collected from monocots in the tropics. Stud Mycol 50:307–311

    Google Scholar 

  • Ariyawansa HA, Kang J-C, Alias SA et al (2013) Towards a natural classification of Dothideomycetes: the genera Dermatodothella, Dothideopsella, Grandigallia, Hysteropeltella and Gloeodiscus (Dothideomycetes incertae sedis). Phytotaxa 147:35–47

    Article  Google Scholar 

  • Ariyawansa HA, Hawksworth DL, Hyde KD et al (2014a) Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fungal Divers 69:57–91

    Article  Google Scholar 

  • Ariyawansa HA, Tanaka K, Thambugala KM et al (2014b) A molecular phylogenetic reappraisal of the Didymosphaeriaceae (= Montagnulaceae). Fungal Divers 68:69–104

    Article  Google Scholar 

  • Ariyawansa HA, Hyde KD, Jayasiri SC et al (2015) Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 75:27–274

    Article  Google Scholar 

  • Arthur JC (1918a) Uredinales of Costa Rica based on collections by E.W.D., Holway. Mycologia 10:111–154

    Article  Google Scholar 

  • Arthur JC (1918b) Uredinales of Guatemala based on collections by E.W.D. Holway. I. Introduction, Coleosporiaceae and Uredinaceae. Am J Bot 5:325–336

    Article  Google Scholar 

  • Arthur JC (1922) Uredinales collected by R. Thaxter and J.B. Rorer in Trinidad. Bot Gaz 73:58–69

    Article  Google Scholar 

  • Asomugha RH, Okafor PN, Ijeh II et al (2014) Hepatic effects of aqueous extract of Chromolaena odorata in male Wistar albino rats. Pharmacol Online 1:127–136

    Google Scholar 

  • Atagana HI (2011) The potential of Chromolaena odorata (L.) to decontaminate used engine oil impacted soil under greenhouse conditions. Int J Phytoremediation 13:627–641

    CAS  PubMed  Article  Google Scholar 

  • Atindehou M, Lagnika L, Guérold B et al (2013) Isolation and identification of two antibacterial agents from Chromolaena odorata L. activity against four diarrheal strains. Adv Microbiol 3:115–121

    CAS  Article  Google Scholar 

  • Aveskamp MM, de Gruyter J, Woudenberg JHC et al (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1–60

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ayerst G (1969) The effects of moisture and temperature on growth and spore germination in some fungi. J Stored Prod Res 5:127–141

    Article  Google Scholar 

  • Ayyanar M, Ignacimuthu S (2009) Herbal medicines for wound healing among tribal people in Southern India: ethnobotanical and scientific evidences. Int J Appl Res Nat Prod 2:29–42

    Google Scholar 

  • Baker RED, Dale WT (1951) Fungi of Trinidad and Tobago. Mycol Pap 33:1–123

    Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    PubMed  Article  Google Scholar 

  • Barhoom S, Sharon A (2004) cAMP regulation of “pathogenic” and “saprophytic” fungal spore germination. Fungal Genet Biol FG B 41:317–326

    CAS  PubMed  Article  Google Scholar 

  • Barku VY, Boahen YO, Dali GA (2014) Ethnobotanical study of wound healing plants in Kpando traditional area, Ghana. Int J Phytomed 6:564–572

    Google Scholar 

  • Barr ME (1979) A classification of Loculoascomycetes. Mycologia 71:935–957

    Article  Google Scholar 

  • Barr ME (1990) Prodromus to nonlichenized, pyrenomycetous members of class Hymenoascomycetes. Mycotaxon 39:98–100

    Google Scholar 

  • Barreda VD, Palazzesi L, Tellería MC et al (2015) Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proc Natl Acad Sci USA 112:10989–10994

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Barreto RW, Evans HC (1994) The mycobiota of the weed Chromolaena odorata in southern Brazil with particular reference to fungal pathogens for biological control. Mycol Res 98:1107–1116

    Article  Google Scholar 

  • Bassett IE, Beggs JR, Paynter Q (2010) Decomposition dynamics of invasive alligator weed compared with native sedges in a Northland lake. New Zeal J Ecol 34:324–331

    Google Scholar 

  • Batista AC, Ciferri R (1962) The Chaetothyriales. Beih. Sydowia 3:1–129

    Google Scholar 

  • Berlese AN (1896) Icones fungorum. Pyrenomycetes 2:1–216

    Google Scholar 

  • Berndt R (2004) A checklist of Costa Rican rust fungi. In Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycote mycology, pp 185–236

  • Bissett J, Gams W, Jaklitsch W, Samuels GJ (2015) Accepted Trichoderma names in the year 2015. IMA Fungus 6:263–295

    PubMed  PubMed Central  Article  Google Scholar 

  • Boehm EWA, Mugambi GK, Miller AN et al (2009a) A molecular phylogenetic reappraisal of the Hysteriaceae, Mytilinidiaceae and Gloniaceae (Pleosporomycetidae, Dothideomycetes) with keys to world species. Stud Mycol 64:49–83

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Boehm EWA, Schoch CL, Spatafora JW (2009b) On the evolution of the Hysteriaceae and Mytilinidiaceae (Pleosporomycetidae, Dothideomycetes, Ascomycota) using four nuclear genes. Mycol Res 113:461–479

    CAS  PubMed  Article  Google Scholar 

  • Boehm EWA, Marson G, Mathiassen GH et al (2015) An overview of the genus Glyphium and its phylogenetic placement in Patellariales. Mycologia 107:607–618

    PubMed  PubMed Central  Article  Google Scholar 

  • Boerema GH, de Gruyer J, Noordeloos ME et al (2004) Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Boonyuen N, Manoch L, Chamswarng C et al (2014) Fungal occurrence on sugarcane filter cake and bagasse isolated from sugar refineries in Thailand. Thai J Agric Sci 47:77–86

    Google Scholar 

  • Boudjeko T, Megnekou R, Woguia AL et al (2015) Antioxidant and immunomodulatory properties of polysaccharides from Allanblackia floribunda Oliv stem bark and Chromolaena odorata (L.) King and H.E. Robins leaves. BMC Res Notes 8:759

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Braun U, Sivapalan A (1999) Cercosporoid hyphomycetes from Brunei. Fungal Diver 3:1–27

    Google Scholar 

  • Březina S, Koubek T, Münzbergová Z, Herben T (2006) Ecological benefits of integration of Calamagrostis epigejos ramets under field conditions. Flora Morphol Distrib Funct Ecol Plants 201:461–467

    Article  Google Scholar 

  • Burgess TI, Crous CJ, Slippers B et al (2016) Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AoB Plants 8:plw076

    PubMed  PubMed Central  Article  Google Scholar 

  • Buritica P, Pardo Cardona VM (1996) Flora Uredineana Colombiana. Rev Acad Colomb Cienc 20:183–236

    Google Scholar 

  • Buzugbe HS, Eze PM, Chukwunwejim CR et al (2018) Investigation of secondary metabolites of an endophytic fungus isolated from the leaves of Chromolaena odorata for possible antimicrobial and antioxidant activities. Pharm Chem J 5:72–77

    CAS  Google Scholar 

  • Cai L, Ji KF, Hyde KD (2006) Variation between freshwater and terrestrial fungal communities on decaying bamboo culms. Antonie Van Leeuwenhoek 89:293–301

    PubMed  Article  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Catarino L, Indjai B, Duarte MC, Monteiro F (2019) Chromolaena odorata invasion in Guinea-Bissau (West Africa): first records and trends of expansion. BioInvasions Rec 8:190–198

    Article  Google Scholar 

  • Chardon CE, Toro RA (1930) Mycological explorations of Colombia. J Dept Agric Porto Rico 14:195–369

    Google Scholar 

  • Chardon CE, Toro RA (1934) Mycological Explorations of Venezuela. Monogr Univ Puerto Rico B 2:1–351

    Google Scholar 

  • Chauhan BS, Johnson DE (2008) Germination ecology of two troublesome Asteraceae species of rainfed rice: Siam Weed (Chromolaena odorata) and Coat Buttons (Tridax procumbens). Weed Sci 56:567–573

    CAS  Article  Google Scholar 

  • Chauhan NM, Gutama AD, Aysa A (2019) Endophytic fungal diversity isolated from different agro-ecosystem of Enset (Ensete ventericosum) in Gedeo zone, SNNPRS, Ethiopia. BMC Microbiol 19:172

    PubMed  PubMed Central  Article  Google Scholar 

  • Chaverri P, Samuels GJ (2013) Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67:2823–2837

    PubMed  Google Scholar 

  • Chaverri P, Branco-Rocha F, Jaklitsch W et al (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107:558–590

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen K, Zhuang WY (2017) Seven soil-inhabiting new species of the genus Trichoderma in the Viride clade. Phytotaxa 312:28–46

    Article  Google Scholar 

  • Chen K, Wu XQ, Huang MX, Han YY (2014) First report of brown culm streak of Phyllostachys praecox caused by Arthrinium arundinis in Nanjing, China. Plant Dis 98:1274

    CAS  PubMed  Article  Google Scholar 

  • Chen Q, Jiang JR, Zhang GZ et al (2015) Resolving the Phoma enigma. Stud Mycol 82:137–217

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen Q, Hou LW, Duan WJ et al (2017) Didymellaceae revisited. Stud Mycol 87:105–159

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chevallier FF (1826) Flore générale des environs de Paris, vol I. Ferra LibrairieEditeur, Paris

    Google Scholar 

  • Chomnunti P, Hongsanan S, Hudson BA et al (2014) The sooty moulds. Fungal Divers 66:1–36

    Article  Google Scholar 

  • Ciferri R (1961) Mycoflora domingensis integrata. Quaderno 19:1–539

    Google Scholar 

  • Clements FE, Shear CL (1931) The genera of fungi. HW Wilson Co. Publ., Minneapolis

    Google Scholar 

  • Colegrave N (2012) The evolutionary success of sex. EMBO Rep 13:774–778

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Corda ACJ (1838) Patellariaceae in Icones Fungorum hucusque cognitorum 2:1–43

  • Cronk Q, Fuller J (1995) Plant invaders: the threat to natural ecosystems. Chapman and Hall Publishing Co, London

    Google Scholar 

  • Crous PW, Groenewald JZ (2013) A phylogenetic re-evaluation of Arthrinium. IMA Fungus 4:133–154

    PubMed  PubMed Central  Article  Google Scholar 

  • Crous PW, Slippers B, Wingfield MJ et al (2006) Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol 55:235–253

    PubMed  PubMed Central  Article  Google Scholar 

  • Crous PW, Shivas RG, Quaedvlieg W et al (2014) Fungal Planet description sheets: 214–280. Persoonia 32:184–306

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Crous PW, Carris LM, Giraldo A et al (2015a) The Genera of Fungi—fixing the application of the type species of generic names—G2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 6:163–198

    PubMed  PubMed Central  Article  Google Scholar 

  • Crous PW, Schumacher RK, Wingfield MJ et al (2015b) Fungal systematics and evolution: FUSE 1. Sydowia 67:81–118

    Google Scholar 

  • Crous PW, Wingfield MJ, Guarro J et al (2015c) Fungal planet description sheets: 320–370. Persoonia 34:167–266

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Crous PW, Wingfield MJ, Le Roux JJ et al (2015d) Fungal planet description sheets: 371–399. Persoonia 35:264–327

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Crous PW, Wingfield MJ, Burgess TI et al (2016) Fungal planet description sheets: 469–557. Persoonia 37:218–403

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Crous PW, Wingfield MJ, Burgess TI et al (2017) Fungal Planet description sheets: 625–715. Persoonia 39:270–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Luangsa-ard JJ, Wingfield MJ et al (2018a) Fungal Planet description sheets: 785–867. Persoonia 41:238–417

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Crous PW, Schumacher RK, Wingfield MJ et al (2018b) New and interesting fungi. 1. Fungal Syst Evol 1:169–215

    Article  PubMed  PubMed Central  Google Scholar 

  • da Cunha KC, Sutton DA, Gené J et al (2014) Pithomyces species (Montagnulaceae) from clinical specimens: identification and antifungal susceptibility profiles. Med Mycol 52:748–757

    PubMed  Article  CAS  Google Scholar 

  • Dagno K, Lahlali R, Diourté M, Jijakli MH (2011) Effect of temperature and water activity on spore germination and mycelial growth of three fungal biocontrol agents against water hyacinth (Eichhornia crassipes). J Appl Microbiol 110:521–528

    CAS  PubMed  Article  Google Scholar 

  • Dai DQ, Wijayawardene NN, Bhat DJ et al (2014) Pustulomyces gen. nov. accommodated in Diaporthaceae, Diaporthales, as revealed by morphology and molecular analyses. Cryptogam Mycol 35:63–72

    Article  Google Scholar 

  • Dai DQ, Phookamsak R, Wijayawardene NN et al (2017) Bambusicolous fungi. Fungal Divers 82:1–105

    Article  Google Scholar 

  • Dayarathne MC, Jones EBG, Maharachchikumbura SSN et al (2020) Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere 11:1–188

    Google Scholar 

  • de Almeida DAC, Gusmão LFP, Miller AN (2014) A new genus and three new species of hysteriaceous ascomycetes from the semiarid region of Brazil. Phytotaxa 176:298–308

    Article  Google Scholar 

  • de Gruyter J (2002) Contributions towards a monograph of Phoma (Coelomycetes)—IX Section Macrospora. Persoonia 18:85–102

    Google Scholar 

  • de Gruyter J, Aveskamp MM, Woudenberg JHC et al (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycol Res 113:508–519

    PubMed  Article  CAS  Google Scholar 

  • de Gruyter J, Woudenberg JHC, Aveskamp MM et al (2010) Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102:1066–1081

    PubMed  Article  Google Scholar 

  • de Gruyter J, Woudenberg JHC, Aveskamp MM et al (2013) Redisposition of phoma-like anamorphs in Pleosporales. Stud Mycol 75:1–36

    PubMed  Article  Google Scholar 

  • de Hoog GS, Guarro J, Gene J et al (2000) Atlas of Clinical Fungi. Centraalbureau voor Schimmelcultures, 2nd edn, Utrecht, pp 1–1160

  • De Notaris G (1844) Osservazione su alcuni generi e specie della tribu dei Pirenomiceti sferiacei G. Bot Ital 2:38–55

    Google Scholar 

  • den Breeÿen A, Groenewald JZ, Verkley GJ, Crous PW (2006) Morphological and molecular characterisation of Mycosphaerellaceae associated with the invasive weed, Chromolaena odorata. Fungal Divers 23:89–110

    Google Scholar 

  • Devadatha B, Sarma VV, Wanasinghe DN et al (2017) Introducing the new Indian mangrove species, Vaginatispora microarmatispora (Lophiostomataceae) based on morphology and multigene phylogenetic analysis. Phytotaxa 329:139–149

    Article  Google Scholar 

  • Devadatha B, Sarma VV, Jeewon R et al (2018) Thyridariella, a novel marine fungal genus from India: morphological characterization and phylogeny inferred from multigene DNA sequence analyses. Mycol Progress 17:791–804

    Article  Google Scholar 

  • Dissanayake AJ, Camporesi E, Hyde KD et al (2016) Dothiorella species associated with woody hosts in Italy. Mycosphere 7:51–63

    Article  Google Scholar 

  • Dixon LJ, Schlub RL, Pernezny K, Datnoff LE (2009) Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology 99:1015–1027

    CAS  PubMed  Article  Google Scholar 

  • Doilom M, Liu JK, Jaklitsch WM et al (2013) An outline of the family Cucurbitariaceae. Sydowia 65:167–192

    Google Scholar 

  • Doilom M, Shuttleworth LA, Roux J et al (2015) Botryosphaeriaceae associated with Tectona grandis (teak) in Northern Thailand. Phytotaxa 233:1–26

    Article  Google Scholar 

  • Doilom M, Dissanayake AJ, Wanasinghe DN et al (2017) Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Divers 82:107–182

    Article  Google Scholar 

  • Dou ZP, Lu M, Wu JR et al (2017) A new species and interesting records of Aplosporella from China. Sydowia 69:1–7

    Google Scholar 

  • du Plessis IL, Druzhinina IS, Atanasova L et al (2018) The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 110:559–583

    PubMed  Article  Google Scholar 

  • Du Z, Fan XL, Yang Q et al (2017) Aplosporella ginkgonis (Aplosporellaceae, Botryosphaeriales), a new species isolated from Ginkgo biloba in China. Mycosphere 8:1246–1252

    Article  Google Scholar 

  • Ekanayaka AH, Dissanayake AJ, Jayasiri SC et al (2016) Aplosporella thailandica; a novel species revealing the sexual-asexual connection in Aplosporellaceae (Botryosphaeriales). Mycosphere 7:440–447

    Article  Google Scholar 

  • Ekanayaka AH, Ariyawansa HA, Hyde KD et al (2017) DISCOMYCETES: the apothecial representatives of the phylum Ascomycota. Fungal Divers 87:237–298

    Article  Google Scholar 

  • El-Desoukey RMA (2018) Phytochemical and antimicrobial activity of Acacia Ehrenbergiana hayne (Salam) as a grazing herb against some animal pathogens. Adv Anim Vet Sci 6:246–251

    Article  Google Scholar 

  • Ellis MB (1965) Dematiaceous Hyphomycetes. VI. Mycol Pap 103:1–46

    Google Scholar 

  • Eriksson OE (2006) Outline of Ascomycota. Myconet 12:1–88

    Google Scholar 

  • Eriksson OE, Hawksworth DL (1986) An alphabetical list of the generic names of ascomycetes. CAB Int Mycol Inst, Wallingford

    Google Scholar 

  • Esperschütz J, Welzl G, Schreiner K et al (2011) Incorporation of carbon from decomposing litter of two pioneer plant species into microbial communities of the detritusphere. FEMS Microbiol Lett 320:48–55

    PubMed  Article  CAS  Google Scholar 

  • Esperschütz J, Zimmermann C, Dümig A et al (2013) Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems. Biogeosciences 10:5115–5124

    Article  Google Scholar 

  • Esuruoso OF (1971) Seed-borne fungi of the Siam weed, Eupatorium odoratum in Nigeria. PANS Pest Artic News Summ 17:458–460

    Article  Google Scholar 

  • Ezard THG, Aze T, Pearson PN, Purvis A (2011) Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332:349–351

    CAS  PubMed  Article  Google Scholar 

  • Ezenyi IC, Salawu OA, Kulkarni R, Emeje M (2014) Antiplasmodial activity-aided isolation and identification of quercetin-4’-methyl ether in Chromolaena odorata leaf fraction with high activity against chloroquine-resistant Plasmodium falciparum. Parasitol Res 113:4415–4422

    CAS  PubMed  Article  Google Scholar 

  • Fajola AO (1978) Cultural studies in Cercospora taxonomy: I. Interrelationships between some species from Nigeria. Nova Hedwigia 29:912–921

    Google Scholar 

  • Fan XL, Yang Q, Cao B et al (2015) New record of Aplosporella javeedii on five hosts in China based on multi-gene analysis and morphology. Mycotaxon 130:749–756

    Article  Google Scholar 

  • Farr DF, Rossman AY (2020) Fungal databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/. Accessed 17 March 2020

  • Feng Y, Zhang S-N, Liu Z-Y (2019) Tremateia murispora sp. nov. (Didymosphaeriaceae, Pleosporales) from Guizhou, China. Phytotaxa 416:79–87

    Article  Google Scholar 

  • Fourtouni A, Manetas Y, Christias C (1998) Effects of UV-B radiation on growth, pigmentation, and spore production in the phytopathogenic fungus Alternaria solani. Can J Bot 76:2093–2099

    CAS  Google Scholar 

  • Fries EM (1822) Systema. Mycologicum 2:1–275

    Google Scholar 

  • Fróhlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • Gallegos ML, Cummins GB (1981) Uredinales (royas) de Mexico, vol 2. Instituto Nacional de Investigaciones Agricoles, Culiacan

  • Gao Y, Liu F, Duan W et al (2017) Diaporthe is paraphyletic. IMA Fungus 8:153–187

    PubMed  PubMed Central  Article  Google Scholar 

  • Gäumann EA (1949) Die Pilze, Grundzüge ihrer Entwicklungsgeschichte und Morphologie. Birkhäuser, Basel

    Google Scholar 

  • Gautier L (1992) Taxonomy and distribution of a tropical weed, Chromolaena odorata (L.) R. King and H. Robinson. Candollea 47:645–662

    Google Scholar 

  • Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Article  Google Scholar 

  • Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M et al (2010) ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Res 38:W14–W18

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Goodall JM, Erasmus DJ (1996) Review of the status and integrated control of the invasive alien weed, Chromolaena odorata in South Africa. Agric Ecosyst Environ 56:151–164

    Article  Google Scholar 

  • Gottlieb D (1950) The physiology of spore germination in fungi. Bot Rev 16:229–257

    CAS  Article  Google Scholar 

  • Govindu HC, Thirumalachar MJ, Nag Raj TR (1970) Notes on some Indian Cercosporae—XII. Sydowia 24:297–301

    Google Scholar 

  • Guatimosim E, Schwartsburd PB, Barreto RW, Crous PW (2016) Novel fungi from an ancient niche: cercosporoid and related sexual morphs on ferns. Persoonia 37:106–141

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gueidan C, Hill DJ, Miadlikowska J, Lutzoni F (2015) 4 Pezizomycotina: Lecanoromycetes. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution: part B. Springer, Berlin, pp 89–120

    Chapter  Google Scholar 

  • Guo Yl (1999a) Fungal flora of tropical Guangxi, China: hyphomycetes I. Mycotaxon 72:349–358

    Google Scholar 

  • Guo Yl (1999b) Imperfect fungi in the tropical areas of China II. Some species of Pseudocercospora from Guangdong province. Mycosystema 18:130–134

    Google Scholar 

  • Guo YL, Liu XJ (2003) Flora Fungorum Sinicorum. Mycovellosiella, Passalora, Phaeoramularia, vol 20. Science Press, Beijing, 189 pp

    Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147:617–630

    CAS  Article  PubMed  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2001) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rdna sequences. Mol Phylogenet Evol 20:1–13

    PubMed  Article  CAS  Google Scholar 

  • Guterres DC, Galvão-Elias S, de Souza BCP et al (2018) Taxonomy, phylogeny, and divergence time estimation for Apiosphaeria guaranitica, a Neotropical parasite on bignoniaceous hosts. Mycologia 110:526–545

    PubMed  Article  Google Scholar 

  • Hanh TTH, Hang DTT, Van Minh C, Dat NT (2011) Anti-inflammatory effects of fatty acids isolated from Chromolaena odorata. Asian Pac J Trop Med 4:760–763

    CAS  PubMed  Article  Google Scholar 

  • Hanphakphoom S, Krajangsang S (2016) Antimicrobial activity of Chromolaena odorata extracts against bacterial human skin infections. Mod Appl Sci 10:159–171

    CAS  Article  Google Scholar 

  • Hansford CG (1949) Tropical fungi—III. New species and revisions. Proc Linn Soc Lond 160:116–153

    Article  Google Scholar 

  • Harman GE, Kubicek CP (1998) Trichoderma and gliocladium, vol 2. In: Enzymes, biological control and commercial applications. Taylor and Francis, London

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  PubMed  Article  Google Scholar 

  • Hashimoto A, Hirayama K, Takahashi H et al (2018) Resolving the Lophiostoma bipolare complex: generic delimitations within Lophiostomataceae. Stud Mycol 90:161–189

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Haugland RA, Heckman JL (1998) Identification of putative sequence specific PCR primers for detection of the toxigenic fungal species Stachybotrys chartarum. Mol Cell Probes 12:387–396

    CAS  PubMed  Article  Google Scholar 

  • Hawksworth DL, Eriksson OE (1986) The names of accepted orders of ascomycetes. Syst Ascomycetum 5:175–184

    Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC et al (1995) Ainsworth & Bisby’s dictionary of the fungi, vol 8. CABI, Wallingford

    Google Scholar 

  • Heneghan L, Fatemi F, Umek L et al (2006) The invasive shrub European buckthorn (Rhamnus cathartica, L.) alters soil properties in Midwestern U.S. woodlands. Appl Soil Ecol 32:142–148

    Article  Google Scholar 

  • Hernández-Restrepo M, Schumacher RK, Wingfield MJ et al (2016) Fungal systematics and evolution: FUSE 2. Sydowia 68:193–230

    Google Scholar 

  • Hernández-Restrepo M, Bezerra JDP, Tan YP et al (2019) Re-evaluation of Mycoleptodiscus species and morphologically similar fungi. Persoonia 42:205–227

    PubMed  PubMed Central  Article  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger PD (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu

    Google Scholar 

  • Hongsanan S, Hyde KD, Bahkali AH et al (2015) Fungal biodiversity profiles 11–20. Cryptogam Mycol 36:355–380

    Article  Google Scholar 

  • Hongsanan S, Maharachchikumbura SSN, Hyde KD et al (2017) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 84:25–41

    Article  Google Scholar 

  • Hosagoudar VB, Mathew S (2000) A preliminary report on the mycoflora of the Andaman & Nicobar Islands, India. J Econ Taxon Bot 24:631–640

    Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S et al (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Huang W, Long C, Lam E (2018) Roles of plant-associated microbiota in Traditional Herbal Medicine. Trends Plant Sci 23:559–562

    CAS  PubMed  Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    CAS  PubMed  Article  Google Scholar 

  • Hyde KD, Goh TK (2003) Adaptations for dispersal in filamentous freshwater fungi. Fungal Divers Res Ser 10:231–258

    Google Scholar 

  • Hyde KD, Jones EBG (1988) Marine mangrove fungi. Mar Ecol 9:15–33

    Article  Google Scholar 

  • Hyde KD, Fröhlich J, Taylor JE (1998) Fungi from palms. XXXVI. Reflections on unitunicate ascomycetes with apiospores. Sydowia 50:21–80

    Google Scholar 

  • Hyde KD, Jones EBG, Liu JK et al (2013) Families of Dothideomycetes. Fungal Divers 63:1–313

    Article  Google Scholar 

  • Hyde KD, Fryar S, Tian Q et al (2016a) Lignicolous freshwater fungi along a north–south latitudinal gradient in the Asian/Australian region; can we predict the impact of global warming on biodiversity and function? Fungal Ecol 19:190–200

    Article  Google Scholar 

  • Hyde KD, Hongsanan S, Jeewon R et al (2016b) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 80:1–270

    Article  Google Scholar 

  • Hyde KD, Maharachchikumbura SSN, Hongsanan S et al (2017a) The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Divers 84:1–23

    Article  Google Scholar 

  • Hyde KD, Norphanphoun C, Abreu VP et al (2017b) Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Divers 87:1–235

    Article  Google Scholar 

  • Hyde KD, Chaiwan N, Norphanphoun C et al (2018a) Mycosphere notes 169–224. Mycosphere 9:271–430

    Article  Google Scholar 

  • Hyde KD, Norphanphoun C, Chen J et al (2018b) Thailand’s amazing diversity: up to 96% of fungi in northern Thailand may be novel. Fungal Divers 93:215–239

    Article  Google Scholar 

  • Hyde KD, Tennakoon DS, Jeewon R et al (2019a) Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers 96:1–242

    Article  Google Scholar 

  • Hyde KD, Xu J, Rapior S et al (2019b) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136

    Article  Google Scholar 

  • Hyde KD, Norphanphoun C, Maharachchikumbura SSN et al (2020) Refined families of Sordariomycetes. Mycosphere 11:305–1059

    Google Scholar 

  • Ikhajiagbe B, Akindolor A (2016) Comparative effects of pretreatment of stem cuttings of Chromolaena odorata (Siam weed) with sodium azide and hydroxylamide on the survival and phyoremediative performance in an oil-polluted soil. Niger J Biotechnol 31:27–39

    Article  Google Scholar 

  • Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91

    PubMed  PubMed Central  Article  Google Scholar 

  • Jaklitsch WM, Voglmayr H (2016) Hidden diversity in Thyridaria and a new circumscription of the Thyridariaceae. Stud Mycol 85:35–64

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jaklitsch WM, Gardiennet A, Voglmayr H (2016) Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia 37:82–105

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jami F, Slippers B, Wingfield MJ, Gryzenhout M (2012) Five new species of the Botryosphaeriaceae from Acacia karroo in South Africa. Cryptogam Mycol 33:245–266

    Article  Google Scholar 

  • Jami F, Slippers B, Wingfield MJ et al (2014) Botryosphaeriaceae species overlap on four unrelated, native South African hosts. Fungal Biol 118:168–179

    PubMed  Article  Google Scholar 

  • Jayasiri S, Hyde KD, Jones EBG et al (2017) Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). Mycosphere 8:1080–1101

    Article  Google Scholar 

  • Jayasiri SC, Hyde KD, Jones EBG et al (2018) Taxonomic novelties of hysteriform Dothideomycetes. Mycosphere 9:803–837

    Article  Google Scholar 

  • Jayasiri SC, Hyde KD, Jones EBG et al (2019) Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 10:1–186

    Article  Google Scholar 

  • Jeewon R, Liew ECY, Hyde KD (2003) Molecular systematics of the Amphisphaeriaceae based on cladistic analyses of partial LSU rDNA gene sequences. Mycol Res 107:1392–1402

    CAS  PubMed  Article  Google Scholar 

  • Jeewon R, Ittoo J, Mahadeb D et al (2013) DNA Based identification and phylogenetic characterisation of endophytic and saprobic fungi from Antidesma madagascariense, a medicinal plant in Mauritius. J Mycol 1–10

  • Jeffrey C (2007) Introduction with key to tribes. In: Kadereit JW, Jeffrey C (eds) the families and genera of vascular plants, vol 8. Flowering plants. Eudicots. Asterales. Springer, Berlin, pp 61–87

    Google Scholar 

  • Jia M, Chen L, Xin HL et al (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:1

    Article  Google Scholar 

  • Jiang N, Li J, Tian CM (2018) Arthrinium species associated with bamboo and reed plants in China. Fungal Syst Evol 2:1–9

    PubMed  PubMed Central  Google Scholar 

  • Jiang HB, Hyde KD, Jayawardena RS et al (2019) Taxonomic and phylogenetic characterizations reveal two new species and two new records of Roussoella (Roussoellaceae, Pleosporales) from Yunnan, China. Mycol Progress 18:577–591

    Article  Google Scholar 

  • Jin HQ, Liu HB, Xie YY et al (2018) Effect of the dark septate endophytic fungus Acrocalymma vagum on heavy metal content in tobacco leaves. Symbiosis 74:89–95

    CAS  Article  Google Scholar 

  • Johari SA, Kiong LS, Mohtar M et al (2012) Efflux inhibitory activity of flavonoids from Chromolaena odorata against selected methicillin-resistant Staphylococcus aureus (MRSA) isolates. Afr J Microbiol Res 6:5631–5635

    CAS  Google Scholar 

  • Johnston A (1960) A supplement to a host list of plant diseases in Malaya. Mycol Pap 77:1–30

    Google Scholar 

  • Jones EBG (2006) Form and function of fungal spore appendages. Mycoscience 47:167

    CAS  Article  Google Scholar 

  • Jones EBG, Pang KL, Abdel-Wahab MA et al (2019) An online resource for marine fungi. Fungal Divers 96:347–433

    Article  Google Scholar 

  • Kamal (2010) Cercosporoid fungi of India. Bishen Singh Mahendra Pal Singh, Dehra Dun

  • Kanase V, Shaikh S (2018) A pharmacognostic and pharmacological review on Chromolaena odorata (Siam weed). Asian J Pharm Clin Res 11:34–38

    CAS  Article  Google Scholar 

  • Kang JC, Hyde KD, Kong RYC (1999) Studies on Amphisphaeriales: the Cainiaceae. Mycol Res 103:1621–1627

    Article  Google Scholar 

  • Kantarcioğlu AS, Celkan T, Yücel A et al (2009) Fatal Trichoderma harzianum infection in a leukemic pediatric patient. Med Mycol 47:207–215

    PubMed  Article  Google Scholar 

  • Karunarathna A, Papizadeh M, Senanayake IC et al (2017) Novel fungal species of Phaeosphaeriaceae with an asexual/sexual morph connection. Mycosphere 8:1818–1834.

    Article  Google Scholar 

  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    PubMed  Article  Google Scholar 

  • Kern FD (1930) Fungi of Santo Domingo—III, Uredinales. Mycologia 22:111–117

    Google Scholar 

  • Kern FD, Ciferri R, Thurston-Jr HW (1933a) The rust-flora of the Dominican Republic. Ann Mycol 31:1–40

    Google Scholar 

  • Kern FD, Thurston HW Jr, Whetzel HH (1933b) Annotated index of the rusts of Colombia. Mycologia 25:448–503

    Article  Google Scholar 

  • Kern FD, Thurston HW Jr, Whetzel HH (1934) Uredinales. Monogr Univ Puerto Rico B 2:262–303

    Google Scholar 

  • Kigigha LT, Zige DV (2013) Activity of Chromolaena odorata on enteric and superficial etiologic bacterial agents. Am J Res Commun 1:266–276

    Google Scholar 

  • Kirk PM (1986) New or interesting microfungi. XV. Miscellaneous hyphomycetes from the British Isles. Trans Br Mycol Soc 86:409–428

    Article  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CABI, Wallingford

    Book  Google Scholar 

  • Kirschner R, Chen CJ (2007) Foliicolous hyphomycetes from Taiwan. Fungal Divers 26:219–239

    Google Scholar 

  • Klein D, Eveleigh DE (1998) Ecology of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Taylor & Francis, London, pp 57–74

    Google Scholar 

  • Köberl M, Schmidt R, Ramadan EM et al (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol 4:400

    PubMed  PubMed Central  Article  Google Scholar 

  • Kodsueb R, Lumyong S, McKenzie EHC et al (2016) Relationships between terrestrial and freshwater lignicolous fungi. Fungal Ecol 19:155–168

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B, Eriksson OE (1995) Fungi on Juncus roemerianus. New dictyosporous ascomycetes. Bot Mar 38:165–174

    Google Scholar 

  • Kolařík M (2018) New taxonomic combinations in endophytic representatives of the genus Nigrograna. Czech Mycol 70:123–126

    Article  Google Scholar 

  • Kolařík M, Spakowicz DJ, Gazis R et al (2017) Biatriospora (Ascomycota: Pleosporales) is an ecologically diverse genus including facultative marine fungi and endophytes with biotechnological potential. Plant Syst Evol 303:35–50

    Article  CAS  Google Scholar 

  • Konta S, Hongsanan S, Tibpromma S et al (2016) An advance in the endophyte story: Oxydothidaceae fam. nov. with six new species of Oxydothis. Mycosphere 7:1425–1446

    Article  Google Scholar 

  • Kouamé PBK, Jacques C, Bedi G et al (2013) Phytochemicals isolated from leaves of Chromolaena odorata: impact on viability and clonogenicity of cancer cell lines. Phytother Res 27:835–840

    PubMed  Article  CAS  Google Scholar 

  • Koutika LS, Rainey HJ (2010) Chromolaena odorata in different ecosystems: weed or fallow plant? Appl Ecol Environ Res 8:131–142

    Article  Google Scholar 

  • Krug JC (1977) The genus Cainia and a new family, Cainiaceae. Sydowia 30:122–133

    Google Scholar 

  • Kumar V, Cheewangkoon R, Thambugala KM et al (2019) Rhytidhysteron mangrovei (Hysteriaceae), a new species from mangroves in Phetchaburi Province, Thailand. Phytotaxa 266:250–260

    Google Scholar 

  • Kutorga E, Hawksworth DL (1997) A re-assessment of the genera referred to the family Patellariaceae (Ascomycota). Systema Ascomycetum 15:1–110

    Google Scholar 

  • Le Dinh T, Zaw M, Matsumoto M (2019) Diaporthe species complex occurring on Asparagus kiusianus in Japan. J Plant Pathol 101:161–167

    Article  Google Scholar 

  • Leylaie S, Zafari D (2018) Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca Plants. Front Microbiol 9:1484

    PubMed  PubMed Central  Article  Google Scholar 

  • Li D, Yang CS, Haugland RA et al (2003) A new species of Memnoniella. Mycotaxon 85:253–257

    Google Scholar 

  • Li QR, Tan P, Jiang YL et al (2013) A novel Trichoderma species isolated from soil in Guizhou, T. guizhouense. Mycol Prog 12:167–172

    Article  Google Scholar 

  • Li BJ, Liu PQ, Jiang Y, Weng QY, Chen QH (2016a) First report of culm rot caused by Arthrinium phaeospermum on Phyllostachys viridis in China. Plant Dis 100:1013

    Article  Google Scholar 

  • Li JF, Bhat DJ, Phookamsak R et al (2016b) Sporidesmioides thailandica gen. et sp. nov. (Dothideomycetes) from northern Thailand. Mycol Progress 15:1169–1178

    Article  Google Scholar 

  • Li JF, Phookamsak R, Jeewon R et al (2017) Molecular taxonomy and morphological characterization reveal new species and new host records of Torula species (Torulaceae, Pleosporales). Mycol Progress 16:447–461

    Article  Google Scholar 

  • Liao C, Peng R, Luo Y et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    CAS  PubMed  Article  Google Scholar 

  • Liew ECY, Aptroot A, Hyde KD (2000) Phylogenetic significance of the pseudoparaphyses in Loculoascomycete taxonomy. Mol Phylogeny Evol 16:392–402

    CAS  Article  Google Scholar 

  • Lin C, McKenzie EHC, Bhat DJ et al (2016) Stachybotrys-like taxa from karst areas and a checklist of stachybotrys-like species from Thailand. Mycosphere 7:1273–1291

    Article  Google Scholar 

  • Lindau G (1897a) Hypocreales. In: Englier HA, Prantl KAE (eds) Die Naturlichen Pflanzenfamilien 1. Verlag W, Engelman, pp 343–372

    Google Scholar 

  • Lindau G (1897b) Hysteriineae. In: Engler & Prantl, Naturliche Pflanzenfamilien. I. Teil, I. Abteilung. 1:265–278

  • Litzenberger SC, Farr ML, Lip HT (1962) A preliminary list of cambodian plant diseases. USAID Division of Agriculture & Natural Resources, Phnom-Penh

  • Liu XJ, Guo YL (1988) Studies on the genus Mycovellosiella of China. Mycosystema 1:241–268

    CAS  Google Scholar 

  • Liu XJ, Yl Guo (1998) Flora Fungorum Sinicorum. Pseudocercospora, vol 9. Science Press, Beijing

    Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    CAS  PubMed  Article  Google Scholar 

  • Liu JK, Phookamsak R, Doilom M et al (2012) Towards a natural classification of Botryosphaeriales. Fungal Divers 57:149–210

    Article  Google Scholar 

  • Liu JK, Phookamsak R, Dai DQ et al (2014) Roussoellaceae, a new pleosporalean family to accommodate the genera Neoroussoella gen. nov. Roussoella and Roussoellopsis. Phytotaxa 181:1–33

    Article  Google Scholar 

  • Liu JK, Hyde KD, Jones EBG et al (2015) Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Divers 72:1–197

    CAS  Article  Google Scholar 

  • Liu JK, Hyde KD, Jeewon R et al (2017) Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Divers 84:75–99

    Article  Google Scholar 

  • Liu LN, Razaq A, Atri NS et al (2018) Fungal systematics and evolution: FUSE 4. Sydowia 70:211–286

    Google Scholar 

  • Lombard L, Houbraken J, Decock C et al (2016) Generic hyper-diversity in Stachybotriaceae. Persoonia 36:156–246

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lumbsch HT, Huhndorf SM (2007) Outline of Ascomycota—2007. Myconet 13:1–99

    Google Scholar 

  • Lumbsch HT, Huhndorf SM (2010a) Myconet volume 14. Part one. Outline of ascomycota—2009. Part two. Notes on ascomycete systematics. Nos. 4751–5113. Fieldiana Life Earth Sci 16:1–65

    Article  Google Scholar 

  • Lumbsch HT, Huhndorf SM (2010b) Outline of Ascomycota—2009. Fieldiana Life Earth Sci 1:1–60

    Article  Google Scholar 

  • Luttrell ES (1951) Taxonomy of pyrenomycetes. University of Missouri Studies 24:1–120

    Google Scholar 

  • Luttrell ES (1955) The ascostromatic ascomycetes. Mycologia 47:511–532

    Article  Google Scholar 

  • Macdonald IAW (1983) Alien trees, shrubs and creepers invading indigenous vegetation in the Hluhluwe-Umfolozi Game Reserve Complex in Natal. Bothalia 14:949–959

    Article  Google Scholar 

  • Maharachchikumbura SSN, Hyde KD, Jones EBG et al (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers 72:199–301

    Article  Google Scholar 

  • Maharachchikumbura SSN, Hyde KD, Jones EBG et al (2016) Families of Sordariomycetes. Fungal Divers 79:1–317

    Article  Google Scholar 

  • Mapook A, Boonmee S, Ariyawansa HA et al (2016a) Taxonomic and phylogenetic placement of Nodulosphaeria. Mycol Prog 15:34

    Article  Google Scholar 

  • Mapook A, Hyde KD, Dai D-Q et al (2016b) Muyocopronales, ord. nov., (Dothideomycetes, Ascomycota) and a reappraisal of Muyocopron species from northern Thailand. Phytotaxa 265:225–237

    Article  Google Scholar 

  • Mapook A, Hyde KD, Hongsanan S et al (2016c) Palawaniaceae fam. nov., a new family (Dothideomycetes, Ascomycota) to accommodate Palawania species and their evolutionary time estimates. Mycosphere 7:1732–1745

    Article  Google Scholar 

  • Mapook A, Macabeo APG, Hyde KD, Thongbai B, Stadler M (2020) Polyketide derivatives from a Dothideomycetes fungus, Pseudopalawania siamensis gen. et sp. nov., (Muyocopronales) with antimicrobial and cytotoxic activities. Biomolecules (Accepted).

  • Matthews S, Brand K (2004) Africa invaded: the growing danger of invaded alien species. The global Invasive species Programme (GISP) Secretariat. Cape Town, South Africa. www.gisp.org/downloadpubs/gipsAfrica.pdf

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • McFadyen R (1996) Potential distribution of Chromolaena odorata (Siam weed) in Australia, Africa and Oceania. Agric Ecosyst Environ 59:89–96

    Article  Google Scholar 

  • Meeboon J, Hidayat I, To-anun C (2007) An annotated list of cercosporoid fungi in Northern Thailand. J Agric Technol 3:51–63

    Google Scholar 

  • Mehl JWM, Slippers B, Roux J, Wingfield MJ (2014) Botryosphaeriaceae associated with die-back of Schizolobium parahyba trees in South Africa and Ecuador. Forest Pathol 44:396–408

    Article  Google Scholar 

  • Minter DW, Rodríguez-Hernández M, Mena Portales J (2001) Fungi of the Caribbean: an annotated checklist. PDMS Publishing

  • Mitakakis TZ, O’meara TJ, Tovey ER (2003) The effect of sunlight on allergen release from spores of the fungus Alternaria. Grana 42:43–46

    Article  Google Scholar 

  • Moore AB (2004) Alien invasive species: impacts on forests and forestry. Forest Health and Biosecurity Working Papers FAO, Rome

  • Morgan-Jones G (1997) Notes on hyphomycetes. LXXIII. Redescription of Phaeoramularia coalescens, Phaeoramularia eupatorii-odorati and Phaeoramularia pruni. Mycotaxon 61:363–373

    Google Scholar 

  • Müller E, von Arx JA (1950) Einige aspekte zur systematik pseudosphärialer ascomyceten. Ber Schw Bot Ges 60:329–397

    Google Scholar 

  • Muniappan R, Reddy GVP, Lai PY (2005) Distribution and biological control of Chromolaena odorata. In: Inderjit A (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser, Basel, pp 223–233

    Chapter  Google Scholar 

  • Munk A (1953) The system of the Pyrenomycetes: a contribution to a natural classification of the group Sphacriales sensu Lindau. Dansk Bot Arkiv 15:1–163

    Google Scholar 

  • Murgia M, Fiamma M, Barac A et al (2018) Biodiversity of fungi in hot desert sands. Microbiol Open 8:e00595

    Article  Google Scholar 

  • Nag Raj TR (1974) Icones generum coelomycetum VI. Univ Waterloo Biol Ser 13:1–41

    Google Scholar 

  • Naidoo KK, Coopoosamy RM, Naidoo G (2011) Screening of Chromolaeana odorata (L.) King and Robinson for antibacterial and antifungal properties. Med Plants Res 5:4859–4862

    Google Scholar 

  • Nannfeldt JA (1932) Studien über die Morphologie und Systematik der nicht-lichenisierten, inoperkulaten Discomyceten. Nova Acta Regiae Soc Sci Uppsaliensis Ser 6:1–368

    Google Scholar 

  • Nesher I, Barhoom S, Sharon A (2008) Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides. BMC Biol 6:9

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ngono NA, Ebelle Etame R, Ndifor F et al (2006) Antifungal activity of Chromolaena odorata (L.). King and Robinson (Asteraceae) of Cameroon. Chemotherapy 52:103–106

    Article  CAS  Google Scholar 

  • Nguanhom J, Cheewangkoon R, Groenewald JZ et al (2015) Taxonomy and phylogeny of Cercospora spp. from Northern Thailand. Phytotaxa 233:27–48

    Article  Google Scholar 

  • Niranjan M, Sarma VV (2018) Twelve new species of Ascomycetous fungi from Andaman Islands, India. Kavaka 50:84–97

    Google Scholar 

  • Nitschke T (1870) Pyrenomycetes Germanici 2, 161–320. Eduard Trewendt, Wroclaw

    Google Scholar 

  • Norphanphoun C, Jeewon R, Mckenzie EHC et al (2017) Taxonomic position of Melomastia italica sp. nov. and phylogenetic reappraisal of Dyfrolomycetales. Cryptogam. Mycology 38:507–526

    Google Scholar 

  • Nylander JAA (2004) MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Ohm RA, Feau N, Henrissat B et al (2012) Diverse Lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen dothideomycetes fungi. PLoS Pathog 8:e1003037

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Okoronkwo A, Aiyesanmi A, Odiyi A et al (2014) Bioaccumulation of cadmium in Siam (Chromolaena odorata) and Node (Synedrella nodiflora) weeds: impact of ethylene diamine tetraacetic acid (EDTA) on uptake. Environ Nat Resour Res 4:p39

    Google Scholar 

  • Onkaramurthy M, Veerapur VP, Thippeswamy BS et al (2013) Anti-diabetic and anti-cataract effects of Chromolaena odorata Linn., in streptozotocin-induced diabetic rats. J Ethnopharmacol 145:363–372

    CAS  PubMed  Article  Google Scholar 

  • Osman M, Valadon LRG (1981) Effect of light (especially near-U.V.) on spore germination and ultrastructure of Verticillium agaricinum. Trans Br Mycol Soc 77:187–189

    Article  Google Scholar 

  • Pandith H, Zhang X, Liggett J et al (2013a) Hemostatic and wound healing properties of Chromolaena odorata leaf extract. ISRN Dermatol 2013:168269

    PubMed  PubMed Central  Google Scholar 

  • Pandith H, Zhang X, Thongpraditchote S et al (2013b) Effect of Siam weed extract and its bioactive component scutellarein tetramethyl ether on anti-inflammatory activity through NF-κB pathway. J Ethnopharmacol 147:434–441

    CAS  PubMed  Article  Google Scholar 

  • Pang KL, Hyde KD, Alias SA et al (2013) Dyfrolomycetaceae, a new family in the Dothideomycetes, Ascomycota. Cryptogam. Mycology 34:223–232

    Google Scholar 

  • Papizadeh M, Soudi MR, Amini L et al (2017) Pyrenochaetopsis tabarestanensis (Cucurbitariaceae, Pleosporales), a new species isolated from rice farms in north Iran. Phytotaxa 297:15–28

    Article  Google Scholar 

  • Pardo Cardona VM (1998) Distribucion de las especies colombianas de Uredinales segun los grupos taxonomicos de sus hospederos. Rev Fac Nal Agric Medellin 51:285–319

    Google Scholar 

  • Pem D, Gafforov Y, Jeewon R et al (2018) Multigene phylogeny coupled with morphological characterization reveal two new species of Holmiella and taxonomic insights within Patellariaceae. Cryptogam. Mycology 39(2):193–209

    Google Scholar 

  • Peregrine WTH, Ahmad KB (1982) Brunei: A first annotated list of plant diseases and associated organisms. Phytopathol Pap 27:1–87

    Google Scholar 

  • Persoon CH (1794) Neuer Versuch einer systematischen Einteilung der Schwämme. N Mag Die Bot Ihrem Ganzen Umfange 1: 63–128

  • Phengsintham P, Chukeatirote E, Abdelsalam KA, Hyde KD, Braun U (2010) Cercospora and allied genera from Laos 2. Cryptogam. Mycology 31:161–181

    Google Scholar 

  • Phengsintham P, Braun U, McKenzie EHC, Chukeatirote E, Cai L, Hyde KD (2013) Monograph of Cercosporoid fungi from Thailand. Pl Pathol Quarantine 3:67–138

    Article  Google Scholar 

  • Phillips AJL, Alves A, Abdollahzadeh J et al (2013) The Botryosphaeriaceae: genera and species known from culture. Stud Mycol 76:51–167

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Phillips AJL, Hyde KD, Alves A, Liu JK (2019) Families in Botryosphaeriales: a phylogenetic, morphological and evolutionary perspective. Fungal Divers 94:1–22

    Article  Google Scholar 

  • Phookamsak R, Liu JK, McKenzie EHC et al (2014) Revision of Phaeosphaeriaceae. Fungal Divers 68:159–238

    Article  Google Scholar 

  • Phookamsak R, Hyde KD, Jeewon R et al (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers 95:1–273

    Article  Google Scholar 

  • Phukhamsakda C, Ariyawansa HA, Phillips AJL et al (2016) Additions to Sporormiaceae: Introducing two novel genera, Sparticola and Forliomyces, from Spartium. Cryptogam. Mycology 37:75–97

    Google Scholar 

  • Piepenbring M (2006) Checklist of fungi in Panama. Preliminary version. Puente Biol 1:1–190

    Google Scholar 

  • Pintos Á, Alvarado P, Planas J, Jarling R (2019) Six new species of Arthrinium from Europe and notes about A. caricicola and other species found in Carex spp. hosts. MycoKeys 49:15–48

    PubMed  PubMed Central  Article  Google Scholar 

  • Pisutthanan N, Liawruangrath B, Liawruangrath S et al (2005) Constituents of the essential oil from aerial parts of Chromolaena odorata from Thailand. Nat Prod Res 20:636–640

    Article  CAS  Google Scholar 

  • Pitt W, Úrbez-Torres JR, Trouillas FP (2014) Munkovalsaria donacina from grapevines and Desert Ash in Australia. Mycosphere 5:656–661

    Article  Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V et al (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    PubMed  Article  Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC et al (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99

    Article  Google Scholar 

  • Puckdeedindan P (1966) A supplementary host list of plant diseases in Thailand. Technical Bulletin Department of Agriculture, Bangkok 7, pp 1–23

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Qin WT, Zhuang WY (2017) Seven new species of Trichoderma (Hypocreales) in the Harzianum and Strictipile clades. Phytotaxa 305:121–139

    Article  Google Scholar 

  • Qin RM, Zheng YL, Valiente-Banuet A et al (2013) The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytol 197:979–988

    PubMed  Article  Google Scholar 

  • Quaedvlieg W, Verkley GJM, Shin HD, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW (2013) Sizing up Septoria. Stud Mycol 75:307–390

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Rabenhorst (1857) Ein Notizblatt für kryptogamische Studien. Hedwigia 1:116

    Google Scholar 

  • Rai MK (1989) Mycosis in man due to Arthrinium phaeospermum var. indicum. First case report. Mycoses 32:472–475

    CAS  PubMed  Article  Google Scholar 

  • Rambaut A (2009) FigTree v1.4: tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree/

  • Rambaut A, Suchard MA, Drummond AJ (2014) Tracer v 1.6, available from: http://tree.bio.ed.ac.uk/software/tracer/

  • Rani CA, Mohammed R (2012) Ethnobotanical study of wound healing plants among the folk medicinal practitioners of several districts in Bangladesh. Am Eur J Sustain Agric 6:371–377

    Google Scholar 

  • Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    CAS  PubMed  Article  Google Scholar 

  • Rao VG (1969) Fungi on Citrus from India. Sydowia 23:215–224

    Google Scholar 

  • Rehner S (2001) Primers for elongation factor 1-α (EF1-α). http://ocid.NACSE.ORG/research/deephyphae/EF1primer.pdf

  • Richardson MJ (1990) An annotated list of seed-borne diseases, 4th edn. International Seed Testing Association, Zurich

    Google Scholar 

  • Rose S (1997) Influence of suburban edges on invasion of Pittosporum undulatum into the bush land of northern Sydney, Australia. Aust J Ecol 22:89–99

    Article  Google Scholar 

  • Roux J, Wingfield MJ, Morris MJ (1997) Botryosphaeria dothidea, a pathogen of Acacia mearnsii in South Africa. S Afr J Sci 93:xii

    Google Scholar 

  • Roy BA (2001) Patterns of association between crucifers and their flower-mimic pathogens: host jumps are more common than coevolution or cospeciation. Evolution 55:41–53

    CAS  PubMed  Article  Google Scholar 

  • Ruangdech T, Wongphatcharachai M, Staley C et al (2017) Influence of heavy metals on rhizosphere microbial communities of Siam weed (Chromolaena odorata L.) using a 16S rRNA gene amplicon sequencing approach. Agric Nat Resour 51:137–141

    Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AW et al (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of witches’ broom disease. Int J Biol Sci 1:24–33

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ruibal C, Gueidan C, Selbmann L et al (2009) Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Russo VM (1985) Leaf spot disease of Chromolaena odorata caused by Septoria sp. in Guam. Pl Dis 69:1101

    Google Scholar 

  • Saccardo PA (1880) Conspectus genera fungorum Italiae inferiorum nempe ad Sphaeropsideas, Melanconieas et Hyphomyceteas pertinentium systemate sporologico dispositorum. Michelia 2:1–38

    Google Scholar 

  • Saccardo PA (1882) Sylloge Fungorum omnium hucusque cognitorum 1:715

  • Saccardo PA (1883) Sylloge Fungorum omnium hucusque cognitorum 2:658–661

  • Samarakoon MC, Hyde KD, Hongsanan S et al (2019) Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations. Fungal Divers 96:285–346

    Article  Google Scholar 

  • Samuels GJ (2006) Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96:195–206

    CAS  PubMed  Article  Google Scholar 

  • Sandoval-Denis M, Sutton DA, Cano-Lira JF et al (2014) Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities. J Clin Microbiol 52:2112–2125

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sawada K (1931) List of fungi found in Formosa. Taiwan Central Institute, Taipei

    Google Scholar 

  • Schoch CL, Shoemaker RA, Seifert KA et al (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052

    CAS  PubMed  Article  Google Scholar 

  • Schoch CL, Crous PW, Groenewald J et al (2009) A class wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Scott LJ, Lange CL, Graham GC, Yeates DK (1998) Genetic diversity and origin of siam weed (Chromolaena odorata) in Australia. Weed Technol 12:27–31

    Article  Google Scholar 

  • Senanayake IC, Maharachchikumbura SSN, Hyde KD et al (2015) Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers 73:73–144

    Article  Google Scholar 

  • Senanayake IC, Crous PW, Groenewald JZ et al (2017) Families of Diaporthales based on morphological and phylogenetic evidence. Stud Mycol 86:217–296

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Senanayake IC, Jeewon R, Chomnunti P et al (2018) Taxonomic circumscription of Diaporthales based on multigene phylogeny and morphology. Fungal Divers 93:241–443

    Article  Google Scholar 

  • Senwanna C, Hongsanan S, Phookamsak R et al (2019) Muyocopron heveae sp. nov. and M. dipterocarpi appears to have host-jumped to rubber. Mycol Progress 18:741–752

    Article  Google Scholar 

  • Setter MJ, Campbell SD (2002) Impact of foliar herbicides on germination and viability of Siam weed (Chromolaena odorata) seeds located on plants at the time of application. Plant Prot Q 17:155–157

    CAS  Google Scholar 

  • Shao X, Li Q, Lin L, He T (2018) On the origin and genetic variability of the two invasive biotypes of Chromolaena odorata. Biol Invasions 20:2033–2046

    Article  Google Scholar 

  • Sharma R, Kulkarni G, Sonawane MS (2017) Alanomyces, a new genus of Aplosporellaceae based on four loci phylogeny. Phytotaxa 297:168–175

    Article  Google Scholar 

  • Shipunov A, Newcombe G, Raghavendra AKH, Anderson CL (2008) Hidden diversity of endophytic fungi in an invasive plant. Am J Bot 95:1096–1108

    PubMed  Article  Google Scholar 

  • Silvestro D, Michalak I (2010) raxmlGUI: a graphical front-end for RAxML Program and documentation. http://www.sourceforge.com

  • Sirinthipaporn A, Jiraungkoorskul W (2017) Wound healing property review of Siam weed, Chromolaena odorata. Pharmacogn Rev 11:35

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106

    Article  Google Scholar 

  • Slippers B, Boissin E, Phillips AJL et al (2013) Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Stud Mycol 76:31–49

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Slippers B, Roux J, Wingfield MJ et al (2014) Confronting the constraints of morphological taxonomy in the Botryosphaeriales. Persoonia Mol Phylogeny Evol Fungi 33:155–168

    CAS  Article  Google Scholar 

  • Smith GJD, Liew ECY, Hyde KD (2003) The Xylariales: a monophyletic order containing 7 families. Fungal Divers 13:185–218

    Google Scholar 

  • Soleimani P, Soleimani MJ, Hosseini S (2018) Phylogenetic relationship and evolution of Neodidymelliopsis isolates collected from Iran. Mycosphere 9:1235–1255

    Article  Google Scholar 

  • Soto-Medina EA, Lücking R (2017) A new species of Rhytidhysteron (Ascomycota: Patellariaceae) from Colombia, with a provisional working key to known species in the world. Rev Acad Colomb Cienc Exactas Físicas Nat 41:59

    Article  Google Scholar 

  • Spegazzini C (1880) Fungi argentini. Pugillus tertius (Continuacion). Anal Soc Cient Argent 10:145–168

    Google Scholar 

  • Spegazzini C (1881a) Fungi argentini additis nonnullis brasiliensibus montevideensibusque. Pugillus quartus (Continuacion). Anal Soc Cient Argent 12:174–189

    Google Scholar 

  • Spegazzini C (1881b) Fungi argentini additis nonnullis brasiliensibus montevideensibusque. Pugillus quartus (Continuacion). Anal Soc Cient Argent 12:97–117

    Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algo- rithm for the RAxML web-servers. Syst Biol 75:758–771

    Article  Google Scholar 

  • Stanley MC, Ifeanyi OE, Nwakaego CC, Esther IO (2014) Antimicrobial effects of Chromolaena odorata on some human pathogens. Int J Curr Microbiol Appl Sci 3:1006–1012

    Google Scholar 

  • Stevenson JA (1975) Fungi of Puerto Rico and the American Virgin Islands. Contr Reed Herb 23:743

    Google Scholar 

  • Strobel G (2018) The emergence of endophytic microbes and their biological promise. J Fungi 4:57

    Article  CAS  Google Scholar 

  • Sturm J (1829) Deutschlands flora, Abt. III. Die Pilze Deutschlands 2:1–136

    Google Scholar 

  • Su H, Hyde KD, Maharachchikumbura SSN et al (2016) The families Distoseptisporaceae fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species from freshwater in Yunnan Province, China. Fungal Divers 80:375–409

    Article  Google Scholar 

  • Su XJ, Luo ZL, Jeewon R et al (2018) Morphology and multigene phylogeny reveal new genus and species of Torulaceae from freshwater habitats in northwestern Yunnan, China. Mycol Progress 17:531–545

    Article  Google Scholar 

  • Suksamrarn A, Chotipong A, Suavansri T et al (2004) Antimycobacterial activity and cytotoxicity of flavonoids from the flowers of Chromolaena odorata. Arch Pharm Res 27:507–511

    CAS  PubMed  Article  Google Scholar 

  • Sun X, Guo L-D, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95

    Article  Google Scholar 

  • Sutton BC (1968) The appressoria of Colletotrichum graminicola and C. falcatum. Can J Bot 46:873–876

    Article  Google Scholar 

  • Tai FL (1979) Sylloge Fungorum Sinicorum. Science Press, Peking

    Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tanaka K, Hirayama K, Yonezawa H et al (2015) Revision of the Massarineae (Pleosporales, Dothideomycetes). Stud Mycol 82:75–136

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R (2007) Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 68:323–329

    CAS  PubMed  Article  Google Scholar 

  • Taylor JE, Hyde KD (2003) Microfungi of tropical and temperate palms. Fungal Divers Res Ser 12:1–459

    Google Scholar 

  • Tennakoon DS, Hyde KD, Wanasinghe DN et al (2016) Taxonomy and phylogenetic appraisal of Montagnula jonesii sp. nov. (Didymosphaeriaceae, Pleosporales). Mycosphere 7:1346–1356

    Article  Google Scholar 

  • Tennakoon DS, Kuo CH, Jeewon R et al (2018) Saprobic Lophiostomataceae (Dothideomycetes): Pseudolophiostoma mangiferae sp. nov. and Neovaginatispora fuckelii, a new record from Mangifera indica. Phytotaxa 364:157–171

    Article  Google Scholar 

  • Thambugala KM, Hyde KD (2018) Additions to the genus Massariothea in Diaporthaceae. Mycol Progress 17:1139–1147

    Article  Google Scholar 

  • Thambugala KM, Hyde KD, Tanaka K et al (2015) Towards a natural classification and backbone tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov. Fungal Divers 74:199–266

    Article  Google Scholar 

  • Thambugala KM, Hyde KD, Eungwanichayapant PD et al (2016) Additions to the genus Rhytidhysteron in Hysteriaceae. Cryptogam. Mycology 37:99–116

    Google Scholar 

  • Thambugala KM, Daranagama DA, Phillips AJL et al (2017a) Microfungi on Tamarix. Fungal Divers 82:239–306

    Article  Google Scholar 

  • Thambugala KM, Wanasinghe DN, Phillips AJL et al (2017b) Mycosphere notes 1–50: Grass (Poaceae) inhabiting Dothideomycetes. Mycosphere 8:697–796

    Article  Google Scholar 

  • Thaung MM (1984) Some fungi of Cercospora complex from Burma. Mycotaxon 19:425–452

    Google Scholar 

  • Theissen F, Sydow H (1918) Vorentwürfe zu den Pseudosphaeriales. Ann Mycol 16:1–34

    Google Scholar 

  • Thomas B, Arumugam R, Veerasamy A, Ramamoorthy S (2014) Ethnomedicinal plants used for the treatment of cuts and wounds by Kuruma tribes, Wayanadu districts of Kerala, India. Asian Pac J Trop Biomed 4:88–91

    Article  Google Scholar 

  • Thompson SM, Tan YP, Young AJ et al (2011) Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia 27:80–89

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Thompson SM, Tan YP, Shivas RG et al (2015) Green and brown bridges between weeds and crops reveal novel Diaporthe species in Australia. Persoonia 35:39–49

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tibpromma S, McKenzie EHC, Karunarathna SC et al (2016) Muyocopron garethjonesii sp. nov. (Muyocopronales, Dothideomycetes) on Pandanus sp. Mycosphere 7:1480–1489

    Article  Google Scholar 

  • Tibpromma S, Hyde KD, Jeewon R et al (2017) Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 83:1–261

    Article  Google Scholar 

  • Tibpromma S, Hyde KD, McKenzie EHC et al (2018) Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae. Fungal Divers 93:1–160

    Article  Google Scholar 

  • Trakunyingcharoen T, Cheewangkoon R, To-anun C et al (2014a) Botryosphaeriaceae associated with diseases of mango (Mangifera indica). Australas Plant Pathol 43:425–438

    Google Scholar 

  • Trakunyingcharoen T, Lombard L, Groenewald JZ et al (2014b) Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera. IMA Fungus 5:391–414

    PubMed  PubMed Central  Article  Google Scholar 

  • Trakunyingcharoen T, Lombard L, Groenewald JZ et al (2015) Caulicolous Botryosphaeriales from Thailand. Persoonia 34:87–99

    CAS  PubMed  Article  Google Scholar 

  • Trognitz F, Hackl E, Widhalm S, Sessitsch A (2016) The role of plant-microbiome interactions in weed establishment and control. FEMS Microbiol Ecol 92:1–15

    Article  CAS  Google Scholar 

  • Truter M, Přikrylová I, Weyl OLF, Smit NJ (2017) Co-introduction of ancyrocephalid monogeneans on their invasive host, the largemouth bass, Micropterus salmoides (Lacepéde, 1802) in South Africa. Int J Parasitol Parasit Wildl 6:420–429

    Article  Google Scholar 

  • Tůma I, Holub P, Fiala K (2009) Soil nutrient heterogeneity and competitive ability of three grass species (Festuca ovina, Arrhenatherum elatius and Calamagrostis epigejos) in experimental conditions. Biologia 64:694–704

    Article  CAS  Google Scholar 

  • Udayanga D, Liu X, McKenzie EHC et al (2011) The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers 50:189

    Article  Google Scholar 

  • Udayanga D, Castlebury LA, Rossman AY et al (2015) The Diaporthe sojae species complex: phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biol 119:383–407

    PubMed  Article  Google Scholar 

  • Urtiaga R (1986) Indice de enfermedades en plantas de Venezuela y Cuba. Impresos en Impresos Nuevo Siglo. S.R.L., Barquisimeto, Venezuela

  • Urtiaga R (2004) Host index of plant diseases and disorders from Venezuela—Addendum. Lara, Venezuela

  • Urtiaga R, Braun U (2013) New species and new records of cercosporoid hyphomycetes from Cuba and Venezuela (Part 2). Mycosphere 4:174–214

    Google Scholar 

  • Váczy KZ, Németh MZ, Csikós A et al (2018) Dothiorella omnivora isolated from grapevine with trunk disease symptoms in Hungary. Eur J Plant Pathol 150:817–824

    Article  Google Scholar 

  • Vaisakh MN, Pandey A (2012) The invasive weed with healing properties: a review on Chromolaena odorata. Int J Pharm Sci Res 3:80–83

    Google Scholar 

  • Valenzuela-Lopez N, Sutton DA, Cano-Lira JF et al (2017) Coelomycetous fungi in the clinical setting: morphological convergence and cryptic diversity. J Clin Microbiol 55:552–567

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Valenzuela-Lopez N, Cano-Lira JF, Guarro J et al (2018) Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Stud Mycol 90:1–69

    CAS  PubMed  Article  Google Scholar 

  • Venugopal P, Junninen K, Linnakoski R et al (2016) Climate and wood quality have decayer-specific effects on fungal wood decomposition. For Ecol Manag 360:341–351

    Article  Google Scholar 

  • Venugopal P, Junninen K, Edman M, Kouki J (2017) Assemblage composition of fungal wood-decay species has a major influence on how climate and wood quality modify decomposition. FEMS Microbiol Ecol 93:1–8

    CAS  Google Scholar 

  • Verkley GJM, Quaedvlieg W, Shin HD, Crous PW (2013) A new approach to species delimitation in Septoria. Stud Mycol 75:213–305

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Videira SIR, Groenewald JZ, Nakashima C et al (2017) Mycosphaerellaceae—chaos or clarity? Stud Mycol 87:257–421

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Viegas AP (1961) Indice de Fungos da America do SuI. Instituto Agronomico de Campinas, Campinas

    Google Scholar 

  • Vijayaraghavan K, Mohamed Ali S, Maruthi R (2013) Studies on phytochemical screening and antioxidant activity of Chromolaena odorata and Annona squamosal. Int J Innov Res Sci Eng Technol 2:7315–7321

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4239–4246

    Article  Google Scholar 

  • Vital PG, Rivera WL (2009) Antimicrobial activity and cytotoxicity of Chromolaena odorata (L. f.) King and Robinson and Uncaria perrottetii (A. Rich) Merr. extracts. J Med Plants Res 3:511–518

    Google Scholar 

  • von Arx JA, Müller E (1954) Die Gattungen der amerosporen Pyrenomyceten. Beitr Kryptogamenfl Schweiz 11:1–434

    Google Scholar 

  • von Arx JA, Müller E (1975) A re-evaluation of the bitunicate Ascomycetes with keys to families and genera. Stud Mycol Baarn 9:1–159

    Google Scholar 

  • von Höhnel F (1917) System der Diaportheen. Ber Dtsch Bot Gesellschaft 35:631–638

    Google Scholar 

  • von Höhnel F (1924) Studien über Hyphomyzeten. Zent Bakteriol Parasitenkd Abt 2:1–26

    Google Scholar 

  • Wallen RM, Perlin MH (2018) An overview of the function and maintenance of sexual reproduction in dikaryotic fungi. Front Microbiol 9:503

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Walsh TJ, Groll A, Hiemenz J et al (2004) Infections due to emerging and uncommon medically important fungal pathogens. Clin Microbiol Infect 10(Suppl 1):48–66

    PubMed  Article  Google Scholar 

  • Wanasinghe DN, Jones EBG, Camporesi E et al (2016) Taxonomy and phylogeny of Laburnicola gen. nov. and Paramassariosphaeria gen. nov. (Didymosphaeriaceae, Massarineae, Pleosporales). Fungal Biol 120:1354–1373

    PubMed  Article  Google Scholar 

  • Wanasinghe DN, Hyde KD, Jeewon R et al (2017) Phylogenetic revision of Camarosporium (Pleosporineae, Dothideomycetes) and allied genera. Stud Mycol 87:207–256

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wanasinghe DN, Phukhamsakda C, Hyde KD et al (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers 89:1–236

    Article  Google Scholar 

  • Wang Y, Guo LD, Hyde KD (2005) Taxonomic placement of sterile morphotypes of endophytic fungi from Pinus tabulaeformis (Pinaceae) in northeast China based on rDNA sequences. Fungal Divers 20:235–260

    CAS  Google Scholar 

  • Wang Y, Hyde KD, McKenzie EHC et al (2015) Overview of Stachybotrys (Memnoniella) and current species status. Fungal Divers 71:17–83

    Article  Google Scholar 

  • Wang M, Liu F, Crous PW, Cai L (2017) Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Persoonia 39:118–142

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang M, Tan XM, Liu F, Cai L (2018) Eight new Arthrinium species from China. MycoKeys 34:1–24

    Article  Google Scholar 

  • Watson W (1929) The classification of lichens. II. New Phytol 28:85–116

    Article  Google Scholar 

  • Wenneker M, Joosten NN, Luckerhoff LLP (2013) Use of (pulsed) UV-C light to control spore germination and mycelial growth of storage diseases causing fungi, and effect on control of storage rot in apples and pears. In: Ioratti C, Altindisli F, Borve J, Escudero-Colomar L, Lucchi A, Molinari F (eds) IOBC/wprs bulletin, pp 389–393

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct se- quencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wijayawardene N, McKenzie EHC, Hyde KD (2012) Towards incorporating anamorphic fungi in a natural classification—checklist and notes for 2011. Mycosphere 3:157–228

    Article  Google Scholar 

  • Wijayawardene NN, Crous PW, Kirk PM et al (2014a) Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names. Fungal Divers 69:1–55

    PubMed  PubMed Central  Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Bhat DJ et al (2014b) Camarosporium-like species are polyphyletic in pleosporales; introducing Paracamarosporium and Pseudocamarosporium gen. nov. in Montagnulaceae. Cryptogam. Mycology 35:177–198

    Google Scholar 

  • Wijayawardene N, Hyde KD, Tibpromma S et al (2017a) Towards incorporating asexual fungi in a natural classification: checklist and notes 2012–2016. Mycosphere 8:1457–1555

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Rajeshkumar KC et al (2017b) Notes for genera: Ascomycota. Fungal Divers 86:1–594

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Lumbsch HT et al (2018) Outline of Ascomycota: 2017. Fungal Divers 88:167–263

    Article  Google Scholar 

  • Williams TH, Liu PSW (1976) A host list of plant diseases in Sabah, Malaysia. Phytopathol Pap 19:1–67

    Google Scholar 

  • Wong MKM, Hyde KD (2001) Diversity of fungi on six species of Gramineae and one species of Cyperaceae in Hong Kong. Mycol Res 105:1485–1491

    Article  Google Scholar 

  • Wu HX, Jaklitsch WM, Voglmayr H et al (2011a) Epitypification, morphology and phylogeny of Tothia fuscella. Mycotaxon 118:203–211

    Article  Google Scholar 

  • Wu HX, Schoch CL, Boonmee S et al (2011b) A reappraisal of Microthyriaceae. Fungal Divers 51:189–248

    PubMed  PubMed Central  Article  Google Scholar 

  • Yacharoen S, Tian Q, Chomnunti P et al (2015) Patellariaceae revisited. Mycosphere 6:290–326

    Article  Google Scholar 

  • Yahya MFZR, Ibrahim MSA, Zawawi WHAWM, Hamid UMA (2014) Biofilm killing effects of Chromolaena odorata extracts against Pseudomonas aeruginosa. Res J Phytochem 8:64–73

    Article  Google Scholar 

  • Yan Y, Yuan Q, Tang J et al (2018) Colletotrichum higginsianum as a model for understanding host–pathogen interactions: a review. Int J Mol Sci 19:2142

    PubMed Central  Article  CAS  Google Scholar 

  • Yang T, Groenewald JZ, Cheewangkoon R et al (2017) Families, genera, and species of Botryosphaeriales. Fungal Biol 121:322–346

    PubMed  Article  Google Scholar 

  • Yang Q, Du Z, Tian CM (2018a) Phylogeny and morphology reveal two new species of Diaporthe from Traditional Chinese Medicine in Northeast China. Phytotaxa 336:159–170

    Article  Google Scholar 

  • Yang Q, Fan X-L, Guarnaccia V, Tian C-M (2018b) High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MycoKeys 39:97–149

    Article  Google Scholar 

  • Yang CL, Xu XL, Wanasinghe DN et al (2019) Neostagonosporella sichuanensis gen. et sp. nov. (Phaeosphaeriaceae, Pleosporales) on Phyllostachys heteroclada (Poaceae) from Sichuan Province, China. MycoKeys 46:119–150

    Article  Google Scholar 

  • Yao HY, He ZL, Wilson MJ, Campbell CD (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol 40:223–237

    CAS  PubMed  Article  Google Scholar 

  • Yen JM (1968) Etude sur les champignons parasites du sud-est Asiatique X. Sixieme note sur les Cercospora de malaisie (1). Bull Soc Mycol France 84:5–18

    Google Scholar 

  • Yen JM (1969) Etude sur les champignons parasites du sud-est asiatique XI. Quelques especes de Sphaeriales de Malaisie. Cah Pac 13:271–280

    Google Scholar 

  • Yen JM (1974) Les Cercospora de Cote D’Ivoire. Bull Soc Mycol France 90:307–324

    Google Scholar 

  • Yu X, He T, Zhao J, Li Q (2014) Invasion genetics of Chromolaena odorata (Asteraceae): extremely low diversity across Asia. Biol Invasions 16:2351–2366

    Article  Google Scholar 

  • Zachariades C, Day M, Muniappan R, Reddy G (2009) Chromolaena odorata (L.) King and Robinson (Asteraceae). In: Muniappan R, Reddy G, Raman A (eds) Biological control of tropical weeds using arthropods. Cambridge University Press, Cambridge, pp 130–162

    Chapter  Google Scholar 

  • Zachariades C, Janse Van Rensburg S, Witt A (2013) Recent spread and new records of Chromolaena odorata in Africa. In: Zachariades C, Strathie LW, Day MD, Muniappan R (eds) Proceedings of the Eighth International Workshop on Biological Control and Management of Chromolaena odorata and other Eupatorieae, 1–2 November 2010. Nairobi, Kenya. ARC-PPRI, Pretoria, pp 20–27

  • Zhang YB, Zhuang WY (2017) Four new species of Trichoderma with hyaline ascospores from southwest China. Mycosphere 8:1914–1929

    Article  Google Scholar 

  • Zhang YB, Zhuang WY (2018) New species of Trichoderma in the Harzianum, Longibrachiatum and Viride clades. Phytotaxa 379:131–142

    Article  Google Scholar 

  • Zhang H, Hyde KD, Mckenzie EHC et al (2012a) Sequence data reveals phylogenetic affinities of Acrocalymma aquatica sp. nov., Aquasubmersa mircensis gen. et sp. nov. and Clohesyomyces aquaticus (freshwater coelomycetes). Cryptogam. Mycology 33:333–346

    Google Scholar 

  • Zhang Y, Crous PW, Schoch CL et al (2012b) Pleosporales. Fungal Divers 53:1–221

    CAS  PubMed  Article  Google Scholar 

  • Zhang J, Bayram Akcapinar G, Atanasova L et al (2016) The neutral metallopeptidase NMP1 of Trichoderma guizhouense is required for mycotrophy and self-defence. Environ Microbiol 18:580–597

    CAS  PubMed  Article  Google Scholar 

  • Zhang JF, Liu JK, Hyde KD et al (2017) Two new species of Dyfrolomyces (Dyfrolomycetaceae, Dothideomycetes) from karst landforms. Phytotaxa 313:267–277

    Article  Google Scholar 

  • Zhang S, Xu B, Zhang J, Gan Y (2018) Identification of the antifungal activity of Trichoderma longibrachiatum T6 and assessment of bioactive substances in controlling phytopathgens. Pestic Biochem Physiol 147:59–66

    CAS  PubMed  Article  Google Scholar 

  • Zhang JF, Liu JK, Jeewon R et al (2019) Fungi from Asian Karst formations III. Molecular and morphological characterization reveal new taxa in Phaeosphaeriaceae. Mycosphere 10:202–220

    Article  Google Scholar 

  • Zhao YM, Deng CR, Chen X (1990) Arthrinium phaeospermum causing dermatomycosis, a new record of China. Acta Mycol Sin 9:232–235

    Google Scholar 

  • Zhao YZ, Zhang ZF, Cai L et al (2018) Four new filamentous fungal species from newly-collected and hivestored bee pollen. Mycosphere 9:1089–1116

    Article  Google Scholar 

  • Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genom 3:4

    Article  Google Scholar 

  • Zhou D, Hyde KD (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457

    Article  Google Scholar 

  • Zhu ZX, Xu HX, Zhuang WY, Li Y (2017) Two new green-spored species of Trichoderma (Sordariomycetes, Ascomycota) and their phylogenetic positions. MycoKeys 26:61–75

    Article  Google Scholar 

  • Zhu HY, Tian CM, Fan XL (2018) Studies of botryosphaerialean fungi associated with canker and dieback of tree hosts in Dongling Mountain of China. Phytotaxa 348:63–76

    Article  Google Scholar 

  • Zhuang WY (2001) Higher fungi of tropical China. Mycotaxon Ltd, New York

    Google Scholar 

  • Zhuang WY (2005) Fungi of northwestern China. Mycotaxon Ltd, Ithaca

    Google Scholar 

Download references

Acknowledgements

The Sanger sequencing cost was funded by personal research budgets of W. Purahong and T. Wubet from the UFZ-Helmholtz Centre for Environmental Research. Ausana Mapook was financially supported by Research and Researchers for Industry Program (RRI) PHD57I0012, Thailand and the German Academic Exchange Service (DAAD) for a joint TRF-DAAD (PPP 2017–2018) academic exchange grant to Kevin D. Hyde and Marc Stadler. Kevin D. Hyde thanks to the 2019 high-end foreign expert introduction plan to Kunming Institute of Botany (granted by the Ministry of Science and Technology of the People’s Republic of China, Grant Number G20190139006), Thailand Research grants entitled Biodiversity, phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans (Grant No: RSA5980068), the future of specialist fungi in a changing climate: baseline data for generalist and specialist fungi associated with ants, Rhododendron species and Dracaena species (Grant No: DBG6080013), Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion (Grant No: RDG6130001). Ausana Mapook also thanks to Shaun Pennycook, Katalee Jariyavidyanont, Dhanushka N. Wanasinghe, Ishani D. Goonasekara, Chayanard Phukhamsakda, Saowaluck Tibpromma, Sirinapa Konta and Chanokned Senwanna for their valuable suggestions and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Hyde.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mapook, A., Hyde, K.D., McKenzie, E.H.C. et al. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Diversity 101, 1–175 (2020). https://doi.org/10.1007/s13225-020-00444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-020-00444-8

Keywords

  • 60 new taxa
  • Antimicrobial activity
  • Ascomycota
  • Checklist
  • Dothideomycetes
  • Evolutionary divergence times
  • Multi-gene phylogenetics
  • Sordariomycetes