The world’s ten most feared fungi

Abstract

An account is provided of the world’s ten most feared fungi. Within areas of interest, we have organized the entries in the order of concern. We put four human pathogens first as this is of concern to most people. This is followed by fungi producing mycotoxins that are highly harmful for humans; Aspergillus flavus, the main producer of aflatoxins, was used as an example. Problems due to indoor air fungi may also directly affect our health and we use Stachybotrys chartarum as an example. Not everyone collects and eats edible mushrooms. However, fatalities caused by mushroom intoxications often make news headlines and therefore we include one of the most poisonous of all mushrooms, Amanita phalloides, as an example. We then move on to the fungi that damage our dwellings causing serious anxiety by rotting our timber structures and flooring. Serpula lacrymans, which causes dry rot is an excellent example. The next example serves to represent all plant and forest pathogens. Here we chose Austropuccinia psidii as it is causing devastating effects in Australia and will probably do likewise in New Zealand. Finally, we chose an important amphibian pathogen which is causing serious declines in the numbers of frogs and other amphibians worldwide. Although we target the top ten most feared fungi, numerous others are causing serious concern to human health, plant production, forestry, other animals and our factories and dwellings. By highlighting ten feared fungi as an example, we aim to promote public awareness of the cost and importance of fungi.

This is a preview of subscription content, log in to check access.

Fig. 1

Taken with permission of the authors from Russell et al. (2016)

Fig. 2
Fig. 3

Courtesy Xie Zhi, Department of Dermatology, Nanning, China

Fig. 4
Fig. 5: a
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Photo credits: Benjarong Thongbai (a) and Harry Andersson (b), in Germany

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Ahmad M, Jacobs D, Wu HH, Wolk DM et al (2017) Cladophialophora bantiana: a rare intracerebral fungal abscess—case series and review of literature. Surg J 3:e62–e68

    Google Scholar 

  2. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New York

    Google Scholar 

  3. Aljuboori Z, Hruska R, Yaseen A, Arnold F et al (2017) Fungal brain abscess caused by “Black Mold” (Cladophialophora bantiana): a case report of successful treatment with an emphasis on how fungal brain abscess may be different from bacterial brain abscess. SurgNeurol Int 8:46

    Google Scholar 

  4. Amaike S, Keller NP (2011) Aspergillus flavus. Ann Rev Phytopathol 49:107–133

    CAS  Google Scholar 

  5. Amend A (2014) From dandruff to deep-sea vents: malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog 10:e1004277

    PubMed  PubMed Central  Google Scholar 

  6. American Society for Microbiology (2010) https://www.asm.org/index.php/component/content/article?id=2570. Accessed August 2018

  7. Ammann HM, Hodgson M, Nevalainen A, Prezant B (2008) Indoor mold: basis for health concerns. In: Prezant B, Weekes DM, Miller JD (eds) Recognition, evaluation and control of indoor mold. American Industrial Hygiene Association, Fairfax, pp 1–19

    Google Scholar 

  8. Andersen B, Nielsen KF, Thrane U, Szaro T et al (2003) Molecular and phenotypic descriptions of Stachybotrys chlorohalonata sp. nov. and two chemotypes of Stachybotrys chartarum found in water-damaged buildings. Mycologia 95:1227–1238

    CAS  PubMed  Google Scholar 

  9. Andersen B, Dosen I, Lewinska AM, Nielsen KF (2017) Pre-contamination of new gypsum wallboard with potentially harmful fungal species. Indoor Air 27:6–12

    CAS  PubMed  Google Scholar 

  10. Andrianopoulos A (2002) Control of morphogenesis in the human fungal pathogen Penicillium marneffei. Int J Med Microbiol 292:331–347

    PubMed  Google Scholar 

  11. Annis SL, Dastoor FP, Ziel H, Daszak P et al (2004) A DNA-based assay identifies Batrachochytrium dendrobatidis in amphibians. J Wildl Dis 40:420–428

    CAS  PubMed  Google Scholar 

  12. Badali H, Prenafeta-Boldú FX, Guarro J, Klaassen CH et al (2011) Cladophialophora psammophila, a novel species of Chaetothyriales with a potential use in the bioremediation of volatile aromatic hydrocarbons. Fungal Biol 115:1019–1029

    CAS  PubMed  Google Scholar 

  13. Balasundaram SV, Hess J, Durling MB, Moody SC et al (2018) The fungus that came in from the cold: dry rot’s pre-adapted ability to invade buildings. ISME J 12:791–801

    CAS  PubMed  Google Scholar 

  14. Bao JR, Master RN, Azad KN, Schwab DA et al (2018) Rapid, accurate identification of Candida auris by using a novel Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) database (library). J Clin Microbiol 56(4):17

    Google Scholar 

  15. Bataille A, Fong JJ, Cha M, Wogan GOU et al (2013) Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Mol Ecol 22:4196–4209

    CAS  PubMed  Google Scholar 

  16. Battilani P, Toscano P, Van der Fels-Klerx HJ, Moretti A et al (2016) Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci Rep 6:24328. https://doi.org/10.1038/srep24328

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Beenken L (2017) Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 297:53–61

    Google Scholar 

  18. Ben-Ami R, Berman J, Novikov A, Bash E et al (2017) Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg Infect Dis 23:195–203

    CAS  PubMed Central  Google Scholar 

  19. Berger L, Speare R, Daszak P, Green DE et al (1998) Chytridiomycosis causes amphibianmortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA 95:9031–9036

    CAS  PubMed  Google Scholar 

  20. Berger L, Speare R, Hines HB, Marantelli G et al (2004) Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aus Vet J 82:434–439

    CAS  Google Scholar 

  21. Berger L, Longcore JE, Speare R, Hyatt A et al (2009) Fungal diseases of amphibians. In: Heatwole H, Wilkinson JW (eds) Amphibian biology, volume 8-amphibian decline: diseases, parasites, maladies and pollution. Surrey Beatty and Sons, Baulkham Hills, pp 2986–3052

    Google Scholar 

  22. Bergis D, Friedrich-Rust M, Zeuzem S, Betz C et al (2012) Treatment of Amanita phalloides intoxication by fractionated plasma separation and adsorption. J Gastrointest Liver 21:171–176

    Google Scholar 

  23. Betancourt DA, Krebs K, Moore SA, Martin SM (2013) Microbial volatile organic compound emissions from Stachybotrys chartarum growing on gypsum wallboard and ceiling tile. BMC Microbiol 13:283–293

    PubMed  PubMed Central  Google Scholar 

  24. Bills GF, Gloer JB (2016) Biologically active secondary metabolites from the Fungi. Microbiol spectr 4:1087–1119

    Google Scholar 

  25. Bond S, Guillot J, Cabañes J (2010) Malassezia yeasts in animal disease. In: Boekhout T, Gueho E, Mayser P, Velegraki A (eds) Malassezia and the skin: science and clinical practice. Springer, Berlin, pp 273–301

    Google Scholar 

  26. Borda LJ, Wikramanayake TC (2015) Seborrheic dermatitis and dandruff: a comprehensive review. Clin Investig Dermatol 3:1–22

    Google Scholar 

  27. Borman AM, Szekely A, Johnson EM (2016) Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. MSphere 1:e00189-16

    PubMed  PubMed Central  Google Scholar 

  28. Bosch J, Martínez-Solano I, García-París M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol Conserv 97:331–337

    Google Scholar 

  29. Boyce J, Andrianopoulos A (2015) Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol Rev 39:797–811

    CAS  PubMed  Google Scholar 

  30. Boyle DG, Olson DH, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org 60:141–148

    CAS  PubMed  Google Scholar 

  31. Brannelly L, Richards-Zawacki CL, Pessier AP (2012) Clinical trials with itraconazole as a treatment for chytrid fungal infections in amphibians. Dis Aquat Org 101:95–104

    CAS  PubMed  Google Scholar 

  32. Bulterys P, Le T, Quang VM, Nelson KE et al (2013) Environmental predictors and incubation period of AIDS-associated Penicillium marneffei infection in Ho Chi Minh City, Vietnam. Clin Infect Dis 56:1273–1279

    PubMed  PubMed Central  Google Scholar 

  33. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155

    CAS  PubMed  Google Scholar 

  34. Byrnes EJ 3rd, Bildfell RJ, Frank SA, Mitchell TG et al (2009) Molecular evidence that the range of the Vancouver Island outbreak of Cryptococcus gattii infection has expanded into the Pacific Northwest in the United States. J Infect Dis 199:1081–1086

    PubMed  PubMed Central  Google Scholar 

  35. Cao C, Li R, Wan Z, Liu W et al (2007) The effects of temperature, pH, and salinity on the growth and dimorphism of Penicillium marneffei. Med Mycol 45:401–407

    CAS  PubMed  Google Scholar 

  36. Cao C, Liang L, Wang W, Luo H et al (2011) Common reservoirs for Penicillium marneffei infection in humans and rodents, China. Emerg Infect Dis 17:209–214

    PubMed  PubMed Central  Google Scholar 

  37. Capponi MP, Sureau P, Segretain G (1956) Pénicillose de Rhizomys sinensis. Bull Soc Pathol Exot 49:418–421

    CAS  Google Scholar 

  38. Carey J, Hofflich H, Amre R, Protic J et al (2005) Penicillium marneffei infection in an immunocompromised traveler: a case report and literature review. J Travel Med 12:291–294

    PubMed  Google Scholar 

  39. Carnegie AJ, Giblin FR (2018) Austropuccinia psidii (myrtle rust). Invasive species compendium. https://www.cabi.org/isc/datasheet/45846. Accessed October 2018

  40. Carnegie AJ, Pegg GS (2018) Lessons from the incursion of myrtle rust in Australia. Annu Rev Phytopathol 56:457–478

    CAS  PubMed  Google Scholar 

  41. Carnegie AJ, Kathuria A, Pegg GS, Entwistle P et al (2016) Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol Invasions 18:127–144

    Google Scholar 

  42. Celis AM, Vos AM, Triana S, Medina CA et al (2017) Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. J Microbiol Method 134:1–6

    CAS  Google Scholar 

  43. Chaiwun B, Vanittanakom N, Jiviriyawat Y, Rojanasthien S et al (2011) Investigation of dogs as a reservoir of Penicillium marneffei in northern Thailand. Int J Infec Dis 15:e236–e239

    Google Scholar 

  44. Chakrabarti A, Kaur H, Rudramurthy SM, Suma MR et al (2016) Brain abscess due to Cladophialophora bantiana: a review of 124 cases. Med Mycol 54:111–119

    PubMed  Google Scholar 

  45. Chan JFW, Chan TSY, Gill H, Lam FY et al (2015) Disseminated infections with Talaromyces marneffei in non-AIDS patients given monoclonal antibodies against CD20 and kinase inhibitors. Emerg Infect Dis 21:1101–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chan JF, Lau SK, Yuen KY, Woo PC (2016) Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients. Emerg Microb Infect 5:e19

    Google Scholar 

  47. Chariyalertsak S, Sirisanthana T, Supparatpinyo K, Praparattanapan J et al (1997) Case-control study of risk factors for Penicillium marneffei infection in human immunodeficiency virus-infected patients in northern Thailand. Clin Infect Dis 24:1080–1086

    CAS  PubMed  Google Scholar 

  48. Chariyalertsak S, Supparatpinyo K, Sirisanthana T, Nelson KE (2002) A controlled trial of itraconazole as primary prophylaxis for systemic fungal infections in patients with advanced human immunodeficiency virus infection in Thailand. Clin Infect Dis 34:277–284

    CAS  PubMed  Google Scholar 

  49. Chow NA, Gade L, Tsay SV, Forsberg K et al (2018) Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(18)30597-8

    Article  PubMed  Google Scholar 

  50. Chowdhary A, Sharma C, Duggal S, Agarwal K et al (2013) New clonal strain of Candida auris, Delhi, India. Emerg Infect Dis 19:1670–1673

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chowdhary A, Anil Kumar V, Sharma C, Prakash A et al (2014) Multidrug-resistant endemic clonal strain of Candida auris in India. Eur J Clin Microbiol Infect Dis 33:919–926

    CAS  PubMed  Google Scholar 

  52. Chowdhary A, Voss A, Meis JF (2016) Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections? J Hosp Infect 94:209–212

    CAS  PubMed  Google Scholar 

  53. Chowdhary A, Sharma C, Meis JF (2017) Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog 13:e1006290

    PubMed  PubMed Central  Google Scholar 

  54. Chowdhary A, Prakash A, Sharma C, Kordalewska M et al (2018) A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother 73:891–899

    PubMed  Google Scholar 

  55. Cooper JA (2007) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Google Scholar 

  56. Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–825

    Google Scholar 

  57. Cox HH, Faber BW, van Heiningen WN, Radhoe H et al (1996) Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase. Appl Environ Microbiol 62:1471–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Da Silva DD, Rapior S, Fons F, Bahkali AH et al (2012a) Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Divers 55:1–35

    Google Scholar 

  59. Da Silva DD, Rapior S, Hyde KD, Bahkali AH (2012b) Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers 56:1–29

    Google Scholar 

  60. Da Silva DD, Rapior S, Sudarman E, Stadler M et al (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40

    Google Scholar 

  61. Dadpour B, Tajoddini S, Rajabi M, Afshari R (2017) Mushroom poisoning in the Northeast of Iran; a retrospective 6-year epidemiologic study. Emergency 5:e23

    PubMed  PubMed Central  Google Scholar 

  62. De Hoog GS, Vicente VA, Najafzadeh MJ, Harrak MJ et al (2011) Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia 27:46–72

    PubMed  PubMed Central  Google Scholar 

  63. De Hoog GS, Dukik K, Monod M, Packeu A et al (2017) Towards a novel multilocus phylogenetic system for the dermatophytes. Mycopathologia 182:5–31

    PubMed  Google Scholar 

  64. De Hoog GS, Guarro J, Gené J, Figueras MJ (2018) Atlas of clinical fungi, 4th edn. Westerdijk Institute/Universitat Rovira i Virgili, Utrecht/Reus

    Google Scholar 

  65. De Monte A, Risso K, Normand AC, Boyer G et al (2014) Chronic pulmonary penicilliosis due to Penicillium marneffei: late presentation in a French traveler. J Travel Med 21:292–294

    PubMed  Google Scholar 

  66. Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE et al (2011) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Google Scholar 

  67. Di Salvo AF, Fickling AM, Ajello L (1973) Infection caused by Penicillium marneffei: description of first natural infection in man. Am J Clin Pathol 60:259–263

    Google Scholar 

  68. Dill I, Trautmann C, Szewzyk R (1997) Massenentwicklung von Stachybotrys chartarum auf kompostierbaren Pflanztöpfen aus Altpapier. Mycoses 40:110–114

    PubMed  Google Scholar 

  69. DiRenzo GV, Zipkin EF, Grant EHC, Royle JA et al (2018) Eco-evolutionary rescue promotes host–pathogen coexistence. Ecol Appl. https://doi.org/10.1002/eap.1792

    Article  PubMed  Google Scholar 

  70. Doggett MS, Porter D (1996) Sexual reproduction in the fungal parasite, Zygorhizidium planktonicum. Mycologia 88:720–732

    Google Scholar 

  71. Došen I, Andersen B, Phippen CB, Clausen G et al (2016) Stachybotrys mycotoxins: from culture extracts to dust samples. Anal Bioanal Chem 408:5513–5526

    PubMed  PubMed Central  Google Scholar 

  72. Duong TA (1996) Infection due to Penicillium marneffei, an emerging pathogen: review of 155 reported cases. Clin Infect Dis 23:125–130

    CAS  PubMed  Google Scholar 

  73. Escandón P, Chow NA, Caceres DH, Gade L et al (2018) Molecular epidemiology of Candida auris in Colombia reveals a highly-related, country-wide colonization with regional patterns in amphotericin B resistance. Clin Infect Dis. https://doi.org/10.1093/cid/ciy411

    Article  PubMed  Google Scholar 

  74. Etzel RA, Montana E, Sorenson WG, Kullman GJ et al (1998) Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi. Arch Ped Adol Med 152:757–762

    CAS  Google Scholar 

  75. Eyre DW, Sheppard AE, Madder H, Moir I et al (2018) A Candida auris outbreak and its control in an intensive care setting. N Engl J Med 379:1322–1331

    PubMed  Google Scholar 

  76. Fakhim H, Vaezi A, Dannaoui E, Chowdhary A et al (2018) Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Mycoses 61:377–382

    PubMed  Google Scholar 

  77. Farrer RA, Weinert LA, Bielby J, Garner TWJ et al (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc Natl Acad Sci 108:18732–18736

    CAS  PubMed  Google Scholar 

  78. Farrer RA, Henk DA, Garner TWJ, Balloux F et al (2013) Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity. PLoS Genet 9:e1003703

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Farrer RA, Martel A, Verbrugghe E, Abouelleil A et al (2017) Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi. Nat Commun 8:14742

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Faustinelli PC, Wang XM, Palencia ER, Arias RS (2016) Genome sequences of eight Aspergillus flavus spp. and one A. parasiticus sp., isolated from peanut seeds in Georgia. Genome Announc 4:e00278-16. https://doi.org/10.1128/genomeA.00278-16

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fellers GM, Green DE, Longcore JE (2001) Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa). Copeia 2001:945–953

    Google Scholar 

  82. Fisher MC, de Hoog GS, Johnson E, Smith MD et al (2005) Clonal populations of Penicillium marneffei in Thailand reveal low effective dispersal. PLoS Pathog 1:159–165

    CAS  Google Scholar 

  83. Fisher MC, Ghosh P, Shelton JMG, Bates K et al (2018) Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Sci Rep 8:7772

    PubMed  PubMed Central  Google Scholar 

  84. Floudas D, Binder M, Riley R, Barry K et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    CAS  PubMed  Google Scholar 

  85. Frankl J (2014) Wood-damaging fungi in truss structures of baroque churches. J Perform Constr Facil 29:04014138

    Google Scholar 

  86. Frisvad JC, Hubka V, Ezekiel CN, Hong SB et al (2019) Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol 93:1–63 (in press)

    CAS  PubMed  Google Scholar 

  87. Furtado EL, Marino CL (2003) Eucalyptus rust management in Brazil. In: Proceedings 2nd IUFRO Rusts of Forest Trees. WP Conference, August 2002, Yangling, China. Forest Research, 16(Suppl.). pp. 118–124

  88. Furusawa H, Miyazaki Y, Sonoda S, Tsuchiya K et al (2014) Penicilliosis marneffei complicated with interstitial pneumonia. Int Med 53:321–323

    Google Scholar 

  89. Gabriel J, Švec K (2017) Occurrence of indoor wood decay basidiomycetes in Europe. Fungal Biol Rev 31:212–217

    Google Scholar 

  90. Gagliardo R, Crump P, Griffith E, Mendelson J et al (2008) The principles of rapid response for amphibian conservation, using the programmes in Panama as an example. Int Zoo Yearb 42:125–135

    Google Scholar 

  91. Gaitanis G, Velegraki A, Magiatis P, Pappas P et al (2011) Could Malassezia yeasts be implicated in skin carcinogenesis through the production of aryl-hydrocarbon receptor ligands? Med Hypotheses 77:47–51

    CAS  PubMed  Google Scholar 

  92. Gaitanis G, Magiatis P, Hantschke M, Bassukas ID et al (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25:106–141

    PubMed  PubMed Central  Google Scholar 

  93. Gardiner S (2012) Two die after eating death cap mushrooms. Sydney Morning Herald, Fairfax Media

    Google Scholar 

  94. Gareis M, Gottschalk C (2014) Stachybotrys spp. and the guttation phenomenon. Mycotoxin Res 30:151–159

    CAS  PubMed  Google Scholar 

  95. Garg N, Devi IB, Vajramani GV, Nagarathna S et al (2007) Central nervous system cladosporiosis: an account of ten culture-proven cases. Neurol India 55:282–288

    PubMed  Google Scholar 

  96. Garzoni C, Markham L, Bijlenga P, Garbino J (2008) Cladophialophora bantiana: a rare cause of fungal brain abscess. Clinical aspects and new therapeutic options. Med Mycol 46:481–486

    PubMed  Google Scholar 

  97. Gerson H (2012) International trade in amphibians: a customs perspective. Alytes 29:103–115

    Google Scholar 

  98. Girard V, Mailler S, Chetry M, Vidal C et al (2016) Identification and typing of the emerging pathogen Candida auris by matrix-assisted laser desorption ionisation time of flight mass spectrometry. Mycoses 59:535–538

    CAS  PubMed  Google Scholar 

  99. Goodell B, Zhu Y, Kim S, Kafle K et al (2017) Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnol Biofuels 10:179

    PubMed  PubMed Central  Google Scholar 

  100. Gower DJ, Doherty-Bone T, Loader SP, Wilkinson M et al (2013) Batrachochytrium dendrobatidis infection and lethal chytridiomycosis in caecilian amphibians (Gymnophiona). EcoHealth 10:173–183

    PubMed  Google Scholar 

  101. Graça RN, Aun CP, Guimarães LMS, Rodrigues BVA et al (2011) A new race of Puccinia psidii defeats the Ppr-1 resistance gene in Eucalyptus grandis. Australas Plant Pathol 40:442–447

    Google Scholar 

  102. Gratwicke B, Evans MJ, Jenkins PT, Kusrini MD et al (2010) Is the international frog legs trade a potential vector for deadly amphibian pathogens? Front Ecol Environ 8:438–442

    Google Scholar 

  103. Greenspan SE, Calhoun AJK, Longcore JE, Levy MG (2012) Transmission of Batrachochytrium dendrobatidis to wood frogs (Lithobates sylvaticus) via a bullfrog (L. catesbeianus) vector. J Wildl Dis 48:575–582

    PubMed  Google Scholar 

  104. Greenspan SE, Bower DS, Webb RJ, Roznik EA et al (2017) Realistic heat pulses protect frogs from disease under simulated rainforest frog thermal regimes. Funct Ecol 31:2274–2286

    Google Scholar 

  105. Greenspan SE, Lambertini C, Carvalho T, James TY et al (2018) Hybrids of amphibian chytrid show high virulence in native hosts. Sci Rep 8:1–10

    CAS  Google Scholar 

  106. Grgurinovic CA, Walsh D, Macbeth F (2006) Eucalyptus rust caused by Puccinia psidii and the threat it poses to Australia. Bull OEPP/EPPO Bull 36:486–489

    Google Scholar 

  107. Grice EA, Dawson TL (2017) Host–microbe interactions: Malassezia and human skin. Curr Op Microbiol 40:81–87

    CAS  Google Scholar 

  108. Gugnani H, Fisher MC, Paliwal-Johsi A, Vanittanakom N et al (2004) Role of Cannomys badius as a natural animal host of Penicillium marneffei in India. J Clin Microbiol 42:5070–5075

    PubMed  PubMed Central  Google Scholar 

  109. Gümral R, Tümgör A, Saraçlı MA, Yildiran ST et al (2014) Black yeast diversity on creosoted railway sleepers changes with ambient climatic conditions. Mic Ecol 68:699–707

    Google Scholar 

  110. Gypsum Association (2018) Website: the American Gypsum Association https://www.gypsum.org/about/building-the-economy/

  111. Hagen F, Khayhan K, Theelen B, Kolecka A et al (2015) Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 78:16–48

    CAS  PubMed  Google Scholar 

  112. Hall C, Hajjawi R, Barlow G, Thaker H et al (2013) Penicillium marneffei presenting as an immune reconstitution inflammatory syndrome (IRIS) in a patient with advanced HIV. BMJ Case Rep. https://doi.org/10.1136/bcr-2012-007555

    Article  PubMed  PubMed Central  Google Scholar 

  113. Harrach M, Bata A, Vezer F, Burucs B (1984) Isolation of verrucarin-j, satratoxin-g and satratoxin-h from Stachybotrys atra infected bedding straw of sports horses with mass disease. Acta Microbiol Hung 31:304

    Google Scholar 

  114. Harris RN, Brucker RM, Walke JB, Becker MH et al (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824

    CAS  PubMed  Google Scholar 

  115. Hart J, Dyer JR, Clark BM, McLellan DG et al (2012) Travel-related disseminated Penicillium marneffei infection in a renal transplant patient. Transpl Infect Dis 14:434–439

    CAS  PubMed  Google Scholar 

  116. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P et al (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692

    CAS  PubMed  Google Scholar 

  117. Hermans F, Ombelet S, Degezelle K, Testelmans D et al (2017) First-in-man observation of Talaromyces marneffei-transmission by organ transplantation. Mycoses 60:213–217

    PubMed  Google Scholar 

  118. Hiruma M, Kawada A, Ohata H, Ohnishi Y et al (1993) Systemic phaeohyphomycosis caused by Exophiala dermatitidis. Mycoses 36:1–7

    CAS  PubMed  Google Scholar 

  119. Hocking DJ, Babbitt KJ (2014) Amphibian contributions to ecosystem services. Herpetol Conserv Biol 9:1–17

    Google Scholar 

  120. Horré R, de Hoog GS (1999) Primary cerebral infections by melanized fungi: a review. Stud Mycol 43:176–193

    Google Scholar 

  121. Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu Y, Zhang J, Li X, Yang Y et al (2013) Penicillium marneffei infection: an emerging disease in mainland China. Mycopathologia 175:57–67

    PubMed  Google Scholar 

  123. Huang L (2011) Clinical and translational research in pneumocystis and pneumocystis pneumonia. Parasite SFP 18:3–11

    CAS  Google Scholar 

  124. Huang X, He G, Lu S, Liang Y et al (2015) Role of Rhizomys pruinosus as a natural animal host of Penicillium marneffei in Guangdong, China. Microb Biotechnol 8:659–664

    PubMed  PubMed Central  Google Scholar 

  125. Hubálek Z, Nesvadbová J, Rychnovsky B (1995) A heterogeneous distribution of Emmonsia parva var. crescens in an agro-ecosystem. J Med Vet Mycol 33:197–200

    PubMed  Google Scholar 

  126. Hussey SM, Gander R, Southern P (2005) Subcutaneous phaeohyphomycosis caused by Cladophialophora bantiana. Arch Pathol Lab Med 129:794–797

    PubMed  Google Scholar 

  127. Hyde KD, Bahkali AH, Moslem MA (2010a) Fungi: an unusual source for cosmetics. Fungal Divers 43:1–9

    Google Scholar 

  128. Hyde KD, Chomnunti P, Crous PW, Groenewald JZ et al (2010b) A case for re-inventory of Australia’s plant pathogens. Persoonia 25:50–60

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ianiri G, Averette A, Kingsbury JM, Heitman J et al (2016) Gene function analysis in the ubiquitous human commensal and pathogen Malassezia genus. MBio. 7:e01853-16

    PubMed  PubMed Central  Google Scholar 

  130. Iatta R, Cafarchia C, Cuna T, Montagna O et al (2014) Bloodstream infections by Malassezia and Candida species in critical care patients. Med Mycol 52:264–269

    CAS  PubMed  Google Scholar 

  131. Iatta R, Puttilli MR, Immediato D, Otranto D et al (2016) The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles. Mycoses 60:178–182

    PubMed  Google Scholar 

  132. Ilahi A, Hadrich I, Goudjil S, Kongolo G et al (2018) Molecular epidemiology of a Malassezia pachydermatis neonatal unit outbreak. Med Mycol 56:69–77

    PubMed  Google Scholar 

  133. Isola D, Selbmann L, de Hoog GS, Fenice M et al (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379

    PubMed  Google Scholar 

  134. Jagels A, Hövelmann Y, Zielinski A, Esselen M et al (2018) Stachybotrychromenes A-C: novel cytotoxic meroterpenoids from Stachybotrys sp. Mycotoxin Res 34:179–185

    CAS  PubMed  PubMed Central  Google Scholar 

  135. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE et al (2006) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871

    PubMed  Google Scholar 

  136. Jayanetra P, Nitiyanant P, Ajello L, Padhye AA et al (1984) Penicilliosis marneffei in Thailand: report of five human cases. Am J Trop Med Hyg 33:637–644

    CAS  PubMed  Google Scholar 

  137. Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K et al (2018) Candida auris: a review of the literature. Clin Microbiol Rev 31:17

    Google Scholar 

  138. Jenkinson TS, Betancourt Román CM, Lambertini C, Valencia-Aguilar A et al (2016) Amphibian-killing chytrid in Brazil comprises both locally endemic and globally expanding populations. Mol Ecol 25:2978–2996

    CAS  PubMed  Google Scholar 

  139. Jennings DH, Bravery AF (1991) Serpula lacrymans: fundamental biology and control strategies. Wiley, Chichester

    Google Scholar 

  140. Joneson S, Stajich JE, Shiu SH, Rosenblum EB (2011) Genomic transition to pathogenicity in chytrid fungi. PLoS Pathog 7:e1002338

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Julander I, Petrini B (1997) Penicillium marneffei infection in a Swedish HIV infected immunodeficient narcotic addict. Scand J Infect Dis 29:320–322

    CAS  PubMed  Google Scholar 

  142. Jung JY, Jo GH, Kim HS, Park MY et al (2012) Disseminated penicilliosis in a Korean human immunodeficiency virus infected patient from laos. J Korean Med Sci 27:697–700

    PubMed  PubMed Central  Google Scholar 

  143. Kamoroff C, Goldberg CS (2017) Using environmental DNA for early detection of amphibian chytrid fungus Batrachochytrium dendrobatidis prior to a ranid die-off. Dis Aquat Organ 127:75–79

    PubMed  Google Scholar 

  144. Kantarcioglu AS, de Hoog GS (2004) Infections of the central nervous system by melanized fungi: a review of cases presented between 1999 and 2004. Mycoses 47:5–13

    Google Scholar 

  145. Kantarcioglu AS, Guarro J, de Hoog GS, Apaydin H et al (2016) A case of central nervous system infection due to Cladophialophora bantiana. Rev Iberoam Micol 33:237–241

    PubMed  Google Scholar 

  146. Karling JS (1964) Synchytrium. Academic Press, New York

    Google Scholar 

  147. Karwehl S, Stadler M (2017) Exploitation of fungal biodiversity for discovery of novel antibiotics. Curr Top Microbiol Immunol 398:303–338

    Google Scholar 

  148. Kathuria S, Singh PK, Sharma C, Prakash A et al (2015) Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. J Clin Microbiol 53:1823–1830

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kauserud H, Svegarden IJ, Sætre GP, Knudsen H et al (2007) Asian origin and rapid global spread of the destructive dry rot fungus Serpula lacrymans. Mol Ecol 16:3350–3360

    CAS  PubMed  Google Scholar 

  150. Kawila R, Chaiwarith R, Supparatpinyo K (2013) Clinical and laboratory characteristics of penicilliosis marneffei among patients with and without HIV infection in Northern Thailand: a retrospective study. BMC Infect Dis 13:464

    PubMed  PubMed Central  Google Scholar 

  151. Kazartsev IA, Serova TA, Titova YA, Gannibal PB (2014) Identification of wood-inhabiting fungal communities in two historical buildings of St. Petersburg. Mikol Fitapatol 48:172–181

    Google Scholar 

  152. Kean R, Delaney C, Sherry L, Borman A et al (2018) Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere 3:e00334-18

    PubMed  PubMed Central  Google Scholar 

  153. Kensler TW, Roebuck BD, Wogan GN, Groopman JD (2011) Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicol Sci 120:28–48

    Google Scholar 

  154. Khan Z, Ahmad S, Al-Sweih N, Joseph L et al (2018) Increasing prevalence, molecular characterization and antifungal drug susceptibility of serial Candida auris isolates in Kuwait. PLoS ONE 13:e0195743

    PubMed  PubMed Central  Google Scholar 

  155. Kidd SE, Hagen F, Tscharke RL, Huynh M et al (2004) A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci 101:17258–17263

    CAS  PubMed  Google Scholar 

  156. Kim D, Lim YR, Ohk SO, Kim BJ et al (2011) Functional expression and characterization of CYP51 from dandruff-causing Malassezia globosa. FEMS Yeast Res 11:80–87

    CAS  PubMed  Google Scholar 

  157. Kirshtein JD, Anderson CW, Wood JS, Longcore JE et al (2007) Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water. Dis Aquat Organ 77:11–15

    CAS  PubMed  Google Scholar 

  158. Klich MA (2007) Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol 8:713–722

    CAS  PubMed  Google Scholar 

  159. Knapp RA, Fellers GM, Kleeman PM, Miller DAW et al (2016) Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proc Natl Acad Sci USA 113:11889–11894

    CAS  PubMed  Google Scholar 

  160. Kohlenberg A, Struelens MJ, Monnet DL, Plachouras D (2018) Candida auris: epidemiological situation, laboratory capacity and preparedness in European Union and European Economic Area countries. Euro Surveill. https://doi.org/10.2807/1560-7917.es.2018.23.13.18-00136

    Article  PubMed  PubMed Central  Google Scholar 

  161. Krzyzanowski N, Oduyemi K, Jack N, Ross NM et al (1999) The management and control of dry rot: a survey of practitioners views and experiences. J Environ Manag 57:143–154

    Google Scholar 

  162. Kumar P, Mahato D, Kamle M, Mohanta TK et al (2016) Aflatoxins: a global concern for food safety, human health and their management. Front Microbiol 7:2170. https://doi.org/10.3389/fmicb.2016.02170

    Article  PubMed  Google Scholar 

  163. Kume K, Ikeda M, Miura S, Ito K et al (2016) α-Amanitin restrains cancer relapse from drug-tolerant cell subpopulations via TAF15. Sci Rep 6:25895

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z et al (2014) Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harbor Perspect Med 4:a.019760

    Google Scholar 

  165. Lamoth F, Kontoyiannis DP (2018) The Candida auris alert: facts and perspectives. J Infect Dis 217:516–520

    PubMed  Google Scholar 

  166. Lange L (2014) The importance of fungi and mycology for addressing major global challenges. IMA Fungus 5:463–471

    PubMed  PubMed Central  Google Scholar 

  167. Lange L, Bech L, Busk PK, Grell MN et al (2012) The importance of fungi and of mycology for a global development of the bioeconomy. IMA Fungus 3:87–92

    PubMed  PubMed Central  Google Scholar 

  168. Laurance WF, McDonald KR, Speare R (1996) Epidemic disease and the catastrophic decline of Australian rain forest frogs. Conserv Biol 10:406–413

    Google Scholar 

  169. Le Bars J, Le Bars P (1996) Recent acute and subacute mycotoxicoses recognized in France. Vet Res 27:383–394

    PubMed  Google Scholar 

  170. Le T, Chi NH, Cuc NTK, Sieu TPM et al (2010) AIDS-associated Penicillium marneffei infection of the central nervous system. Clin Infect Dis 51:1458–1462

    PubMed  PubMed Central  Google Scholar 

  171. Lee WG, Shin JH, Uh Y, Kang MG et al (2011) First three reported cases of nosocomial fungemia caused by Candida auris. J Clin Microbiol 49:3139–3142

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Li X, Yang Y, Zhang X, Zhou X et al (2011) Isolation of Penicillium marneffei from soil and wild rodents in Guangdong, SE China. Mycopathologia 172:447–451

    PubMed  Google Scholar 

  173. Link HF (1809) Observationes in Ordines plantarum naturales. Dissertation prima, complectens Anandrarum ordines Epiphytas, Mucedines Gastomycos et Fungos. Der Gesellschaft Naturforschender Freunde zu Berlin. Magazin für die neuesten Entdeckungen in der gesamten Naturkunde 3:1–42

    Google Scholar 

  174. Lips K (2018) The hidden biodiversity of amphibian pathogens. Science 360:604–605

    CAS  PubMed  Google Scholar 

  175. Lips KR, Brem F, Brenes R, Reeve JD et al (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA 103:3165–3170

    CAS  PubMed  Google Scholar 

  176. Liu Y, Wu F (2010) Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect 118:818–824

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Lockhart SR, Berkow EL, Chow N, Welsh RM (2017a) Candida auris for the clinical microbiology laboratory: not your grandfather’s Candida species. Clin Microbiol Newsl 39:99–103

    PubMed  PubMed Central  Google Scholar 

  178. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J et al (2017b) Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 64:134–140

    CAS  PubMed  Google Scholar 

  179. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Google Scholar 

  180. Lorch JM, Palmer JM, Vanderwolf KJ, Schmidt KZ et al (2018) A new cold-tolerant species of yeast isolated from bats. Persoonia 41:56–70

    Google Scholar 

  181. Luo H, DuBois B, Sgambelluri RM, Angelos ER et al (2015) Production of (15)N-labeled α-amanitin in Galerina marginata. Toxicon 103:60–64

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Luo Y, Liu X, Li J (2018) Updating techniques on controlling mycotoxins: a review. Food Control 89:123–132

    CAS  Google Scholar 

  183. Malin AS, Gwanzura LK, Robertson VJ, Musvaire P et al (1995) Pneumocystis carinii pneumonia in Zimbabwe. Lancet 346:1258–1261

    CAS  PubMed  Google Scholar 

  184. Maniar JK, Chitale AR, Miskeen A, Shah K et al (2005) Penicillium marneffei infection: an AIDS-defining illness. Indian J Dermatol Venereol Leprol 71:202–204

    CAS  PubMed  Google Scholar 

  185. Martel A, Blooi M, Adriaensen C, Van Rooij P et al (2013a) Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631

    Google Scholar 

  186. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W et al (2013b) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci USA 110:15325–15329

    CAS  PubMed  Google Scholar 

  187. Mathur P, Hasan F, Singh PK, Malhotra R et al (2018) Five-year profile of candidaemia at an Indian trauma centre: high rates of Candida auris blood stream infections. Mycoses 61:674–680

    CAS  Google Scholar 

  188. Matinkhoo K, Pryyma A, Todorovic M, Patrick BO et al (2018) Synthesis of the death-cap mushroom toxin α-amanitin. J Am Chem Soc 140:6513–6517

    CAS  PubMed  Google Scholar 

  189. Maurice S, Le Floch G, Le Bras-Quéré M, Barbier G (2011) improved molecular methods to characterise Serpula lacrymans and other basidiomycetes involved in wood decay. J Microbiol Methods 84:208–215

    CAS  PubMed  Google Scholar 

  190. Meis JF, Chowdhary A (2018) Candida auris: a global fungal public health threat. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(18)30609-1

    Article  PubMed  Google Scholar 

  191. Miller JD, McMullin DR (2014) Fungal secondary metabolites as harmful indoor air contaminants: 10 years on. Appl Microbiol Biotech 98:9953–9966

    CAS  Google Scholar 

  192. Miller JD, Rand TG, Jarvis BB (2003) Stachybotrys chartarum: cause of human disease or media darling? Med Mycol 41:271–291

    CAS  PubMed  Google Scholar 

  193. Misch EA, Safdar N (2016) Updated guidelines for the diagnosis and management of aspergillosis. J Thorac Dis 8:1771–1776

    Google Scholar 

  194. Mitchell NJ, Bowers E, Hurburgh C, Wu F (2016) Potential economic losses to the USA corn industry from aflatoxin contamination. Food Addit Contam 33:540–550

    CAS  Google Scholar 

  195. Mizusawa M, Miller H, Green R, Lee R et al (2017) Can multidrug-resistant Candida auris be reliably identified in clinical microbiology laboratories? J Clin Microbiol 55:638–640

    PubMed  PubMed Central  Google Scholar 

  196. Mohsin J, Khalili SA, Gerrits van den Ende AHG, Khamis F et al (2017) Imported talaromycosis in Oman in advanced HIV: a diagnostic challenge outside the endemic areas. Mycopathologia 182:739–745

    PubMed  PubMed Central  Google Scholar 

  197. Morehouse EA, James TY, Ganley AR, Vilgalys R et al (2003) Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol Ecol 12:395–403

    CAS  PubMed  Google Scholar 

  198. Moreno LF, Ahmed AOA, Brankovics B, Cuomo CA et al (2018) Genomic understanding of an infectious brain disease from the desert. Genes Genom Genet 8:909–922

    Google Scholar 

  199. Morris A, Norris KA (2012) Colonization by Pneumocystis jirovecii and its role in disease. Clin Microbiol Rev 25:297–317

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Mortimer PE, Karunarathna SC, Li QH, Gui H et al (2012) Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Divers 56:31–47

    Google Scholar 

  201. Mousavi B, Hedayati M, Hedayati N, Ilkit M et al (2016) Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Myc 2:36–42

    CAS  Google Scholar 

  202. Muñoz JF, Gade L, Chow NA, Loparev VN et al (2018) Genomic basis of multidrug-resistance, mating, and virulence in Candida auris and related emerging species. bioRxiv preprint. http://dx.doi.org/10.1101/299917

  203. Muths E, Corn PS, Pessier AP, Green DE (2003) Evidence for disease related amphibian decline in Colorado. Biol Conserv 110:357–365

    Google Scholar 

  204. Nelson BD (2001) Stachybotrys chartarum: the toxic indoor mold. APSnet Features. Online. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.2163&rep=rep1&type=pdf

  205. Nichols DK, Lamirande EW (2001) Successful treatment of chytridiomycosis. Froglog 46; www.open.ac.uk/daptf/ froglog/FROGLOG–46–1.html

  206. Nutten S (2015) Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab 66:8–16

    CAS  PubMed  Google Scholar 

  207. O’Hanlon SJ, Rieux A, Farrer RA, Rosa GM et al (2018) Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360:621–627

    PubMed  Google Scholar 

  208. Okoth S, De Boevre M, Vidal A, Diana Di Mavungu J (2018) Genetic and toxigenic variability within Aspergillus flavus population isolated from maize in two diverse environments in Kenya. Front Microbiol 9:57. https://doi.org/10.3389/fmicb.2018.00057

    Article  PubMed  PubMed Central  Google Scholar 

  209. Olson DH, Aanensen DM, Ronnenberg KL, Powell CI et al (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8:e56802. https://doi.org/10.1371/journal.pone.0056802

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  210. Otsuki T, Wilson JS, Sewadeh M (2001) Saving two in a billion: quantifying the trade effect of European food safety standards on African exports. Food Policy 26:495–514

    Google Scholar 

  211. Øya E, Afanou AKJ, Malla N, Uhlig S et al (2018) Characterization and pro-inflammatory responses of spore and hyphae samples from various mold species. Indoor Air 28:28–39

    PubMed  Google Scholar 

  212. Palfreyman JW (1995) The impact of current research on the treatment of infestations by the dry rot fungus Serpula lacrymans. Int Biodeterior Biodegrad 8305:369–395

    Google Scholar 

  213. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L et al (2018) Invasive candidiasis. Nat Rev Dis Primers 4:18026. https://doi.org/10.1038/nrdp.2018.26

    Article  PubMed  Google Scholar 

  214. Park BJ, Wannemuehler KA, Marston BJ, Govender N et al (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–530

    PubMed  Google Scholar 

  215. Patassi AA, Saka B, Landoh DE, Kotosso A et al (2013) First observation in a non-endemic country (Togo) of Penicillium marneffei infection in a human immunodeficiency virus-infected patient: a case report. BMC Res Notes 6:506

    PubMed  PubMed Central  Google Scholar 

  216. Pautler KB, Padhye AA, Ajello L (1984) Imported penicilliosis marneffei in the United States: report of a second human infection. Sabouraudia 22:433–438

    CAS  PubMed  Google Scholar 

  217. Pawlowska J, Pawlak J, Kamiski A, Hevelke P et al (2006) Amanita phalloides poisoning as an indication for liver transplantation in three family members. Wiad Lek (in Polish) 59:131–134

    Google Scholar 

  218. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A (2017) The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis 17:383–392

    Google Scholar 

  219. Piehl MR, Kaplan RL, Haber MH (1988) Disseminated penicilliosis in a patient with acquired immunodeficiency syndrome. Arch Pathol Lab Med 112:1262–1264

    CAS  PubMed  Google Scholar 

  220. Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15

    PubMed  Google Scholar 

  221. Prenafeta-Boldú FX, Summerbell RC, de Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard. FEMS Microbiol Rev 30:109–130

    PubMed  Google Scholar 

  222. Presley GN, Schilling JS (2017) Distinct growth and secretome strategies for two taxonomically divergent brown rot fungi. Appl Environ Microbiol 83:e02987-16

    PubMed  PubMed Central  Google Scholar 

  223. Pringle A, Vellinga EC (2006) Last chance to know? Using literature to explore the biogeography of and invasion biology of the death cap mushroom Amanita phalloides (Vaill. ex Fr.:Fr) Link. Biol Invasions 8:1131–1144

    Google Scholar 

  224. Pringle A, Adams RI, Cross HB, Bruns TD (2009) The ectomycorrhizal fungus Amanita phalloides was introduced and is expanding its range on the west coast of North America. Mol Ecol 18:817–833

    CAS  PubMed  Google Scholar 

  225. Prohic A, Jovovic Sadikovic T, Krupalija-Fazlic M, Kuskunovic-Vlahovljak S (2016) Malassezia species in healthy skin and in dermatological conditions. Int J Dermatol 55:494–504

    PubMed  Google Scholar 

  226. Pryce-Miller E, Aanensen D, Vanittanakom N, Fisher MC (2008) Environmental detection of Penicillium marneffei and growth in soil microcosms in competition with Talaromyces stipitatus. Fungal Ecol 1:49–56

    Google Scholar 

  227. Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, Chichester

    Google Scholar 

  228. Renati S, Cukras A, Bigby M (2015) Pityriasis versicolor. BMJ 350:h1394

    PubMed  Google Scholar 

  229. Rhodes J, Abdolrasouli A, Farrer RA, Cuomo CA et al (2018) Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg Microbes Infect 7:43

    PubMed  PubMed Central  Google Scholar 

  230. Robens J, Cardwell K (2003) The costs of mycotoxin management to the USA: management of aflatoxins in the United States. J Toxicol Toxin Rev 22:139–152

    Google Scholar 

  231. Rodchenko J, Lyubasovskaya L, Priputnevich T et al. (2016) Monitoring of Malassezia furfur in neonatal intensive care units. The 6th Congress of Asia Pacific Society for Medical Mycology

  232. Rollins-Smith LA, Conlon JM (2005) Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev Comp Immunol 29:589–598

    CAS  PubMed  Google Scholar 

  233. Rosenblum EB, Stajich JE, Maddox N, Eisen MB (2008) Global gene expression profiles for life stages of the deadly amphibian pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci USA 105:17034–17039

    CAS  PubMed  Google Scholar 

  234. Rosenblum EB, James TY, Zamudio KR, Poorten TJ et al (2013) Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc Natl Acad Sci USA 110:9385–9390

    CAS  PubMed  Google Scholar 

  235. Ruiz-Gaitán A, Moret AM, Tasias-Pitarch M, Aleixandre-Lopez AI et al (2018) An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 61:498–505

    PubMed  Google Scholar 

  236. Russell EB, Gunew MN, Dennis MM, Halliday CL (2016) Cerebral pyogranulomatous encephalitis caused by Cladophialophora bantiana in a 15-week-old domestic shorthair kitten. JFMS Open Rep 2:2055116916677935

    PubMed  PubMed Central  Google Scholar 

  237. Ryvarden L (1993) Tropical polypores. In: Isaac S, Frankland JC, Watling R, Whalley AJS (eds) Aspects of tropical mycology. Cambridge University Press, Cambridge, pp 149–170

    Google Scholar 

  238. Samson RA, Yilmaz N, Houbraken J, Spierenburg H et al (2011) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol 70:159–183

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Sandhu KS, Karaoglu H, Zhang P, Park RF (2016) Simple sequence repeat markers support the presence of a single genotype of Puccinia psidii in Australia. Plant Pathol 65:1084–1094

    CAS  Google Scholar 

  240. Santiso G, Chediak V, Maiolo E, Mujica MT et al (2011) Infección diseminada por Penicillium marneffei en un paciente HIV-positivo. Primera observación en la República Argentina. Rev Argent Microbiol 43:268–272

    PubMed  Google Scholar 

  241. Sar B, Boy S, Keo C, Ngeth CC et al (2006) In vitro antifungal-drug susceptibilities of mycelial and yeast forms of Penicillium marneffei isolates in Cambodia. J Clin Microbiol 44:4208–4210

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Saris K, Meis JF, Voss A (2018) Candida auris. Curr Opin Infect Dis 31:334–340

    PubMed  Google Scholar 

  243. Satoh K, Makimura K, Hasumi Y, Nishiyama Y et al (2009) Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol 53:41–44

    CAS  PubMed  Google Scholar 

  244. Scheidegger KA, Payne GA (2003) Unlocking the secrets behind secondary metabolism: a review of Aspergillus flavus from pathogenicity to functional genomics. J Toxicol 22:423–459

    CAS  Google Scholar 

  245. Schelenz S, Hagen F, Rhodes JL, Abdolrasouli A et al (2016) First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control 5:35. https://doi.org/10.1186/s13756-016-0132-5

    Article  PubMed  PubMed Central  Google Scholar 

  246. Schloegel LM, Picco AM, Kilpatrick AM, Davies AJ et al (2009) Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana). BiolConserv 142:1420–1426

    Google Scholar 

  247. Schloegel LM, Toledo LF, Longcore JE, Greenspan SE et al (2012) Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol 21:5162–5177. https://doi.org/10.1111/j.1365-294X.2012.05710.x

    Article  PubMed  Google Scholar 

  248. Schneider GC (1979) A field outbreak of suspected stachybotryotoxicosis in sheep. J S Afr Vet Assoc 50:73–81

    CAS  PubMed  Google Scholar 

  249. Seyedmousavi S, Badali H, Chlebicki A, Zhao J et al (2011) Exophiala sideris, a novel black yeast obtained by enrichment with toxic alkyl benzenes and arsenic. Fungal Biol 115:1030–1037

    CAS  PubMed  Google Scholar 

  250. Sgambelluri RM, Epis S, Sassera D, Luo H et al (2014) Profiling of amatoxins and phallotoxins in the genus Lepiota by liquid chromatography combined with UV absorbance and mass spectrometry. Toxins 6:2336–2347

    PubMed  PubMed Central  Google Scholar 

  251. Skolnik K, Huston S, Mody CH (2017) Cryptococcal lung infections. Clin Chest Med 38:451–464

    PubMed  Google Scholar 

  252. Snayd M, Dias F, Ryan RW, Clout D et al (2018) Misidentification of Candida auris by RapID Yeast Plus, a commercial, biochemical enzyme-based manual rapid identification system. J Clin Microbiol 56:e00080-18

    PubMed  PubMed Central  Google Scholar 

  253. Son VT, Khue PM, Strobel M (2014) Penicilliosis and AIDS in Haiphong, Vietnam: evolution and predictive factors of death. Med Maladies Infect 44:495–501

    CAS  Google Scholar 

  254. Song Y, Laureijssen-van de Sande W, Moreno LF, Gerrits van den Ende B et al (2017) Comparative ecology of capsular Exophiala species causing disseminated infection in humans. Front Microbiol 8:2514

    PubMed  PubMed Central  Google Scholar 

  255. Strosnider H, Azziz-Baumgartner E, Banziger M, Bhat RV et al (2006) Workgroup report: public health strategies for reducing aflatoxin exposure in developing countries. Environ Health Perspect 114(12):1898–1903

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Stuart SN, Chanson JS, Cox NA, Young BE et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    CAS  PubMed  Google Scholar 

  257. Supparatpinyo K, Nelson KE, Merz WG, Breslin BJ et al (1993) Response to antifungal therapy by human immunodeficiency virus-infected patients with disseminated Penicillium marneffei infections and in vitro susceptibilities of isolates from clinical specimens. Antimicrob Agents Chemother 37:2407–2411

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Tan MK, Collins D, Chen Z, Englezou A et al (2014) A brief overview of the size and composition of the myrtle rust genome and its taxonomic status. Mycology 5:52–63

    PubMed  PubMed Central  Google Scholar 

  259. Teixeira MM, Moreno LF, Stielow BJ, Muszewska A et al (2017) Exploring the genomic diversity of black yeasts and relatives (order Chaetothyriales, Ascomycota). Stud Mycol 86:1–28

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Theelen B, Cafarchia C, Gaitanis G, Bassukas ID et al (2018) Malassezia ecology, pathophysiology, and treatment. Med Mycol 56:S10–S25

    PubMed  Google Scholar 

  261. Thongbai B, Miller SL, Stadler M, Wittstein K et al (2017) Study of three interesting species of Amanita from Thailand based on multiple gene phylogeny and toxin analysis. PLoS ONE 12:e0182131

    PubMed  PubMed Central  Google Scholar 

  262. Tong KB, Lau JL, Murtagh K, Layton AJ et al (2009) The economic impact of aspergillosis: analysis of hospital expenditures across patient subgroups. Int J Infect Dis 13:24–36

    PubMed  Google Scholar 

  263. Tsao DC, Park NJ, Nag A, Martinson HG (2012) Prolonged α-amanitin treatment of cells for studying mutated polymerases causes degradation of DSIF160 and other proteins. RNA 18:222–229

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Tsay S, Kallen A, Jackson BR, Chiller TM et al (2018) Approach to the investigation and management of patients with Candida auris, an emerging multidrug-resistant yeast. Clin Infect Dis 66:306–311

    PubMed  PubMed Central  Google Scholar 

  265. Tulloss RE, Yang ZL (2018) Studies in the Amanitaceae. http://www.amanitaceae.org/?HowTo’s&howto=8. Accessed August 2018

  266. Udomkun P, Wiredu AN, Nagle M, Bandyopadhyay R et al (2017) Mycotoxins in Sub-Saharan Africa: present situation, socio-economic impact, awareness, and outlook. Food Control 72:110–122

    CAS  Google Scholar 

  267. Vanittanakom N, Cooper CR, Fisher MC, Sirisanthana T (2006) Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin Microbiol Rev 19:95–110

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Vardon PJ, McLaughlin C, Nardinelli C (2003) Potential economic costs of mycotoxins in the United States. Council of Agriculture, Science, and Technology; Ames(IA). Mycotoxins: risks in plant, animal and human systems (Task force report), Chapter 10:136–142

  269. Verweij PE, Chowdhary A, Melchers WJ, Meis JF (2015) Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis 62:362–368

    PubMed  PubMed Central  Google Scholar 

  270. Villers P (2014) Aflatoxins and safe storage. Front Microbiol 5:1–5

    Google Scholar 

  271. Voyles J, Young S, Berger L, Campbell C et al (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585

    CAS  PubMed  Google Scholar 

  272. Voyles J, Johnson LR, Rohr J, Kelly R et al (2017) Diversity in growth patterns among strains of the lethal fungal pathogen Batrachochytrium dendrobatidis across extended thermal optima. Oecologia 184:363–373

    PubMed  PubMed Central  Google Scholar 

  273. Voyles J, Woodhams DC, Saenz V, Byrne AQ et al (2018) Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science 359:1517–1519

    CAS  PubMed  Google Scholar 

  274. Vu Hai V, Ngo AT, Ngo VH, Nguyen QH et al (2010) Penicilliosis in Vietnam: a series of 94 patients. Rev méd interne 31:812–818

    CAS  PubMed  Google Scholar 

  275. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473

    CAS  PubMed  Google Scholar 

  276. Walte HG, Schwake-Anduschus C, Geisen R, Fritsche J (2016) Aflatoxin: food chain transfer from feed to milk. J Consum Prot Food Saf 11:295–297

    Google Scholar 

  277. Wang Q, Theelen B, Groenewald M, Bai F et al (2014) Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Persoonia 33:41–47

    PubMed  PubMed Central  Google Scholar 

  278. Watkinson SC, Eastwood DC (2012) Serpula lacrymans, wood and buildings. In: Laskin Allen I, Sariaslani Sima, Gadd Geoffrey M (eds) Advances in applied microbiology, vol 78. Academic Press, Burlington, pp 121–149

    Google Scholar 

  279. Weaver MA, Scheffler BE, Duke M, Ballard L et al (2017) Genome sequences of three strains of Aspergillus flavus for the biological control of aflatoxin. Genome Announc 5:e01204–e01217. https://doi.org/10.1128/genomeA.01204-17

    Article  PubMed  PubMed Central  Google Scholar 

  280. Weir BS, Paderes EP, Anand N, Uchida JY et al (2015) A taxonomic revision of Phytophthora clade 5 including two new species, Phytophthora agathidicida and P. cocois. Phytotaxa 205:21–38

    Google Scholar 

  281. Westerdijk Fungal Biodiversity Institute (2018) http://www.westerdijkinstitute.nl/. Accessed August 2018

  282. Wicklow DT, Wilson DM, Nelsen TC (1993) Survival of Aspergillus flavus sclerotia and conidia buried in soils in Illinois or Georgia. Phytopathology 83:1141–1147

    Google Scholar 

  283. Wijayawardene NN, Hyde KD, Lumbsch T, Liu JK et al (2018) Outline of Ascomycota—2017. Fungal Divers 86:1–594

    Google Scholar 

  284. Wilkins K, Nielsen KF, Din SU (2003) Patterns of volatile metabolites and nonvolatile trichothecens produced by isolates of Stachybotrys, Fusarium, Trichoderma, Trichothecium and Memnoniella. Environ Sci Pollut Res 10:162

    CAS  Google Scholar 

  285. Williams JH, Phillips TD, Jolly PE, Stiles JK et al (2004) Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr 80:1106–1122

    CAS  PubMed  Google Scholar 

  286. Wong SYN, Wong KF (2011) Penicillium marneffei infection in AIDS. Pathol Res Int 1:1–10. https://doi.org/10.4061/2011/764293

    Article  Google Scholar 

  287. World Health Organization (2016) http://www.who.int/news-room/fact-sheets/detail/pneumonia. Accessed August 2018

  288. Wu F (2015) Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J 8:137–142

    Google Scholar 

  289. Wu HC, Santella R (2012) The role of aflatoxins in hepatocellular carcinoma. Hepat Mon 12:e7238. https://doi.org/10.5812/hepatmon.7238

    Article  PubMed  PubMed Central  Google Scholar 

  290. Wu F, Groopman JD, Pestka JJ (2014) Public health impacts of foodborne mycotoxins. Annu Rev Food Sci T 5:351–372

    CAS  Google Scholar 

  291. Wu G, Zhao H, Li C, Rajapakse MP et al (2015) Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human Skin. PLoS Genet 11:e1005614

    PubMed  PubMed Central  Google Scholar 

  292. Yap TA, Koo MS, Ambrose RF, Vredenburg VT (2018) Introduced bullfrog facilitates pathogen invasion in the western United States. PLoS ONE 13:e0188384

    PubMed  PubMed Central  Google Scholar 

  293. Yilmaz N, Visagie CM, Houbraken J, Frisvad JC et al (2014) Polyphasic taxonomy of the genus Talaromyces. Stud Mycol 78:175–341

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Yuping Ran (Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, P. R. China) for providing clinical images a and b in Fig. 4 and Jan Dijksterhuis (Westerdijk Fungal Biodiversity institute, Utrecht, the Netherlands) for his aid in making the Scanning Electron Microscopy (SEM) picture of Malassezia furfur cells (Fig. 4c). Sujiraphong Pharkjaksu, Orawan Tulyaprawat and Popchai Ngamskulrungroj (Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand) are thanked for the permission to use the illustrations of Cryptococcus. We thank Harry Andersson (Braunschweig, Germany) for an image of Amanita phalloides.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Hyde.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hyde, K.D., Al-Hatmi, A.M.S., Andersen, B. et al. The world’s ten most feared fungi. Fungal Diversity 93, 161–194 (2018). https://doi.org/10.1007/s13225-018-0413-9

Download citation

Keywords

  • Aflatoxicosis
  • Batrachochytrium
  • Candida auris
  • Frog decline
  • Poisonous fungi
  • Human pathogens
  • Indoor fungi
  • Forest pathogens
  • Wood decay