High levels of endemism among Galapagos basidiolichens

Abstract

This study is a re-assessment of basidiolichen diversity in the Galapagos Islands. We present a molecular phylogenetic analysis, based on 92 specimens from Galapagos, using two nuclear ribosomal DNA markers (ITS and nuLSU). We also re-examined the morphology and anatomy of all sequenced material. The molecular results confirm our previous assessment that all Galapagos basidiolichens belong to the Dictyonema clade, which in Galapagos is represented by four genera: Acantholichen, Cora, Cyphellostereum, and Dictyonema. Most species previously reported from Galapagos in these genera were at the time believed to represent widely distributed taxa. This conclusion, however, has changed with the inclusion of molecular data. Although almost the same number of species is distinguished, the phylogenetic data now suggest that all are restricted to the Galapagos Islands. Among them, six species are proposed here as new to science, namely Cora galapagoensis, Cyphellostereum unoquinoum, Dictyonema barbatum, D. darwinianum, D. ramificans, and D. subobscuratum; and four species have already been described previously, namely Acantholichen galapagoensis, Cora santacruzensis, Dictyonema pectinatum, and D. galapagoense, here recombined as Cyphellostereum galapagoense. Our analysis is set on a very broad phylogenetic framework, which includes a large number of specimens (N = 826) mainly from Central and South America, and therefore strongly suggests an unusually high level of endemism previously not recognized. This analysis also shows that the closest relatives of half of the basidiolichens now found in Galapagos are from mainland Ecuador, implying that they reached the islands through the shortest route, with all species arriving on the islands through independent colonization events.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Ali JR, Aitchison JC (2014) Exploring the combined role of eustasy and oceanic island thermal subsidence in shaping biodiversity on the Galápagos. J Biogeogr 41:1227–1241. doi:10.1111/jbi.12313

    Article  Google Scholar 

  2. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    CAS  Article  PubMed  Google Scholar 

  3. Aptroot A (2008) Lichens of St Helena and Ascension Island. Bot J Linn Soc 158:147–171

    Article  Google Scholar 

  4. Aptroot A, Bungartz F (2007) The lichen genus Ramalina on the Galapagos. The Lichenologist. doi:10.1017/S0024282907006901

    Google Scholar 

  5. Aptroot A, Sparrius LB (2008) Crustose Roccellaceae in the Galapagos Islands, with the new species Schismatomma spierii. Bryol 111(4):659–666

    Article  Google Scholar 

  6. Aptroot A, Sparrius LB, LaGreca S, Bungartz F (2008) Angiactis, a new crustose lichen genus in the Roccellaceae, with species from Bermuda, the Galapagos Islands and Australia. The Bryologist 111(3):510–516

    Article  Google Scholar 

  7. Bensted-Smith H (2002) A biodiversity vision for the Galapagos Islands. Charles Darwin Foundation and World Wildlife Fund, Puerto Ayora

    Google Scholar 

  8. Bungartz F (2008) Cyanolichens of the Galapagos Islands–the genera Collema and Leptogium. Sauteria 15:139–158

    Google Scholar 

  9. Bungartz F, Lücking R, Aptroot A (2010) The family Graphidaceae (Ostropales, Lecanoromycetes) in the Galapagos Islands. Nova Hedwig. 90:1–44

    Article  Google Scholar 

  10. Bungartz F, Benatti MN, Spielmann AA (2013a) The genus Bulbothrix (Parmeliaceae, Lecanoromycetes) in the Galapagos Islands: a case study of superficially similar, but overlooked macrolichens. The Bryologist 116:358–372. doi:10.1639/0007-2745-116.4.358

    Article  Google Scholar 

  11. Bungartz F, Hillmann G, Kalb K, Elix JA (2013b) Leprose and leproid lichens of the Galapagos, with a particular focus on Lepraria (Stereocaulaceae) and Septotrapelia (Pilocarpaceae). Phytotaxa 150:1. doi:10.11646/phytotaxa.150.1.1

    Article  Google Scholar 

  12. Bungartz F, Ziemmeck F, Yánez Ayabaca A, Nugra F, Aptroot A (2013) CDF checklist of Galapagos lichenized fungi [FCD Lista de especies de Hongos liquenizados Galápagos]. In: Bungartz F, Herrera H, Jaramillo P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (eds) Charles Darwin Foundation Galapagos species checklist [Lista de Especies de Galápagos de la Fundación Charles Darwin]. Charles Darwin Foundation/Fundación Charles Darwin, Puerto Ayora, Galapagos. http://www.darwinfoundation.org/datazone/checklists/true-fungi/lichens/. http://www.darwinfoundation.org/datazone/checklists/media/lists/download/2013Dec03_Bungartz_et_al_Galapagos_Lichens_Checklist.pdf. Accessed 03 Dec 2013

  13. Bungartz F, Elix JA, Yánez-Ayabaca A, Archer AW (2015) Endemism in the genus Pertusaria (Pertusariales, lichenized Ascomycota) from the Galapagos Islands. Telopea 18:325–369

    Article  Google Scholar 

  14. Bungartz F, Giralt M, Sheard JW, Elix JA (2016a) The lichen genus Rinodina (Physciaceae, Teloschistales) in the Galapagos Islands, Ecuador. The Bryologist 119:60–93

    Article  Google Scholar 

  15. Bungartz F, Klaus K, Giralt M et al (2016b) New and overlooked species from the Galapagos Islands: the generic concept of Diploicia reassessed. The Lichenologist 48:489–515

    Article  Google Scholar 

  16. Carlquist S (1974) Island biology. Columbia University Press, New York

    Google Scholar 

  17. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. doi:10.1093/nar/gkt1244

    CAS  Article  PubMed  Google Scholar 

  18. Cornejo C, Scheidegger C (2016) Cyanobacterial gardens: the liverwort Frullania asagrayana acts as a reservoir of lichen photobionts. Environ Microbiol Rep 8(3):352–357

    CAS  Article  PubMed  Google Scholar 

  19. Cornejo C, Nelson PR, Stepanchikova I et al (2016) Contrasting pattern of photobiont diversity in the Atlantic and Pacific populations of Erioderma pedicellatum (Pannariaceae). The Lichenologist 48:275–291. doi:10.1017/S0024282916000311

    Article  Google Scholar 

  20. Dal-Forno M, Lawrey JD, Sikaroodi M et al (2013) Starting from scratch: evolution of the lichen thallus in the basidiolichen Dictyonema (Agaricales: Hygrophoraceae). Fungal Biol 117:584–598. doi:10.1016/j.funbio.2013.05.006

    CAS  Article  PubMed  Google Scholar 

  21. Dal-Forno M, Lücking R, Bungartz F et al (2016a) From one to six: unrecognized species diversity in the genus Acantholichen P. M. Jørg. (lichenized Basidiomycota: Hygrophoraceae). Mycologia 108:38–55. doi:10.3852/15-060

    Article  PubMed  Google Scholar 

  22. Dal-Forno M, Lücking R, Sikaroodi M et al (2016b) Photobiont diversity in cyanolichens of the Dictyonema clade (Hygrophoraceae: Basidiomycota). In: The 8th IAL Symposium, Helsinki, Finland

  23. Darwin C (1859) On the origins of species by means of natural selection. Murray, London

    Google Scholar 

  24. Dodge C (1935) Lichenes. HK Svenson: Plants of the Astor Expedition, 1930 (Galápagos and Cocos Islands). Am J Bot 22(2):221

  25. Elix JA, McCarthy PM (1998) Catalogue of the lichens of the smaller Pacific Islands. Bibl Lichenol 70:1–361

    Google Scholar 

  26. Elix JA, McCarthy PM (2008) Checklist of Pacific Island Lichens. Australian Biological Resources Study, Canberra. Version 21 August 2008

  27. Goward T (1994) Living antiquities. Nat Can 1994:14–21

    Google Scholar 

  28. Gradstein SR, Weber WA (1982) Bryogeography of the Galápagos Islands. J Hattori Bot Lab 52:127–152

    Google Scholar 

  29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  30. Jørgensen PM (1998) Acantholichen pannarioides, a new basidiolichen from South America. The Bryologist 101:444–447

    Article  Google Scholar 

  31. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Larsson K-H (2007) Re-thinking the classification of corticioid fungi. Mycol Res 111:1040–1063. doi:10.1016/j.mycres.2007.08.001

    Article  PubMed  Google Scholar 

  34. Lawrey JD, Lücking R, Sipman HJM, Chaves JL, Redhead SA, Bungartz F, Sikaroodi M, Gillevet PM (2009) High concentration of basidiolichens in a single family of agaricoid mushrooms (Basidiomycota: Agaricales: Hygrophoraceae). Mycol Res 113:1154–1171

    CAS  Article  PubMed  Google Scholar 

  35. Linder DH (1934) The Templeton Crocker Expedition of the California Academy of Sciences, 1932. No. 18. Proc Calif Acad Sci Ser IV 21:211–224

    Google Scholar 

  36. Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457:830–836. doi:10.1038/nature07893

    CAS  Article  PubMed  Google Scholar 

  37. Lücking R, Lawrey JD, Sikaroodi M et al (2009) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am J Bot 96:1409–1418. doi:10.3732/ajb.0800258

    Article  PubMed  Google Scholar 

  38. Lücking R, Dal-Forno M, Lawrey JD et al (2013a) Ten new species of lichenized Basidiomycota in the genera Dictyonema and Cora (Agaricales: Hygrophoraceae), with a key to all accepted genera and species in the Dictyonema clade. Phytotaxa 139:1. doi:10.11646/phytotaxa.139.1.1

    Article  Google Scholar 

  39. Lücking R, Dal-Forno M, Wilk K, Lawrey JD (2013b) Three new species of Dictyonema (lichenized Basidiomycota: Hygrophoraceae) from Bolivia. Acta Nova 6:4–16

    Google Scholar 

  40. Lücking R, Dal-Forno M, Sikaroodi M et al (2014a) A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci 111:11091–11096. doi:10.1073/pnas.1403517111

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lücking R, Lawrey JD, Gillevet PM et al (2014b) Multiple ITS Haplotypes in the Genome of the Lichenized Basidiomycete Cora inversa (Hygrophoraceae): Fact or Artifact? J Mol Evol 78:148–162. doi:10.1007/s00239-013-9603-y

    Article  PubMed  Google Scholar 

  42. Lücking R, Caceres MES, Silva NG, Alves RJV (2015) The genus Cora in the South Atlantic and the Mascarenes: two novel taxa and inferred biogeographic relationships. Bryol 118(3):293–303. doi:10.1639/0007-2745-118.3.293

    Article  Google Scholar 

  43. Lücking R, Forno MD, Moncada B et al (2016) Turbo-taxonomy to assemble a megadiverse lichen genus: seventy new species of Cora (Basidiomycota: Agaricales: Hygrophoraceae), honouring David Leslie Hawksworth’s seventieth birthday. Fungal Divers. doi:10.1007/s13225-016-0374-9

    Google Scholar 

  44. Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45:524–545

    Article  Google Scholar 

  45. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), 2010. IEEE, pp 1–8

  46. Moncada B, Reidy B, Lücking R (2014) A phylogenetic revision of Hawaiian Pseudocyphellaria sensu lato (lichenized Ascomycota: Lobariaceae) reveals eight new species and a high degree of inferred endemism. Bryol 117:119–160

    Article  Google Scholar 

  47. Moncada B, Bungartz F, Lücking R (2016) The family Lobariaceae in the Galapagos Islands. The 8th IAL Symposium, Helsinki, Finland

  48. Penn O, Privman E, Ashkenazy H et al (2010a) GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res 38:W23–W28. doi:10.1093/nar/gkq443

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Penn O, Privman E, Landan G et al (2010b) An alignment confidence score capturing robustness to guide tree uncertainty. Mol Biol Evol 27:1759–1767. doi:10.1093/molbev/msq066

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. Am J Bot 88:1490–1498

    CAS  Article  PubMed  Google Scholar 

  51. Schmull M, Dal-Forno M, Lücking R et al (2014) Dictyonema huaorani (Agaricales: Hygrophoraceae), a new lichenized basidiomycete from Amazonian Ecuador with presumed hallucinogenic properties. Bryol 117:386–394. doi:10.1639/0007-2745-117.4.386

    Article  Google Scholar 

  52. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109:6241–6246. doi:10.1073/pnas.1117018109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  Article  PubMed  Google Scholar 

  54. Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463

    CAS  Article  PubMed  Google Scholar 

  55. Tehler A, Irestedt M, Bungartz F, Wedin M (2009) Evolution and reproduction modes in the Roccella galapagoensis aggregate (Roccellaceae, Arthoniales). Taxon 58:438–456

    Google Scholar 

  56. Tye A, Snell H, Peck S, Adsersen H (2002) Outstanding terrestrial features of the Galapagos archipelago. Biodivers Vis Galapagos Isl Charles Darwin Found World Wildl Fund Puerto Ayora 25–35

  57. Vargas LY, Moncada B, Lücking R (2014) Five new species of Cora and Dictyonema (Basidiomycota: Hygrophoraceae) from Colombia: chipping away at cataloging hundreds of unrecognized taxa. The Bryologist 117:368–378. doi:10.1639/0007-2745-117.4.368

    Article  Google Scholar 

  58. Weber WA (1966) Lichenology and bryology in the Galapagos Islands, with check lists of the lichens and bryophytes thus far reported. In: Bowman RI (ed) The Galapagos. University of California Press, Berkeley, pp 190–200

    Google Scholar 

  59. Weber WA (1986) The lichen flora of the Galapagos Islands, Ecuador. Mycotaxon 27:451–497

    Google Scholar 

  60. Weber WA (1993) Additions to the Galápagos and Cocos Islands lichen and bryophyte floras. Bryologist 96(3):431–434

    Article  Google Scholar 

  61. Williamson M (1981) Island populations. Oxford: Oxford University Press xi, 286p.-illus., maps. En Maps, Geog

  62. Yánez A, Dal-Forno M, Bungartz F et al (2012) A first assessment of Galapagos basidiolichens. Fungal Divers 52:225–244. doi:10.1007/s13225-011-0133-x

    Article  Google Scholar 

  63. Yánez A, Ahti T, Bungartz F (2013) The family Cladoniaceae (Lecanorales) in the Galapagos Islands. Phytotaxa 129(1):1–33. doi:10.11646/phytotaxa.129.1.1

    Article  Google Scholar 

Download references

Acknowledgements

Authors want to thank National Science Foundation for financial support through a Division of Environmental Biology grant (DEB 0841405, PI: J. Lawrey; CoPIs: R. Lücking, P. Gillevet) and a Postdoctoral Research Fellowship in Biology (PRFB 1609022, PI: M. Dal Forno). Authors also thank all colleagues around the world who have contributed valuable Dictyonema s.l. collections over many years so a broad phylogenetic study could be done. Masoumeh Sikaroodi and Patrick Gillevet are thanked for their help and support in the molecular laboratory. Taxonomic research on Galapagos species, with the goal of establishing the first IUCN red list of endemic Galapagos lichens, is supported by the Mohamed bin Zayed Species Conservation Fund, Project 152510692. We are very grateful to the Charles Darwin Foundation, especially its executive director Arturo Izurieta and science coordinator José Marin, for their continued support of the Galapagos Lichen Inventory. For research and collection permits we are especially indebted to the Galapagos National Park, particularly Washington Tapia and Galo Quedaza, and, more recently, Jorge Carrion and Daniel Lara. The lichen inventory is part of the Census of Galapagos Biodiversity by Charles Darwin Foundation (donors cited at http://www.darwinfoundation.org/datazone/checklists/). This publication is contribution number 2159 of the Charles Darwin Foundation for the Galapagos Islands. Lastly, authors would like to thank managing editor Jian-Kui Liu and two anonymous reviewers for their contributions to improve this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuela Dal Forno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Phylogeny (ITS) of Cora obtained under ML. Branches are thickened for all bootstrap (BS) values ≥70. Placement of Galapagos species are in bold (PDF 601 kb)

Supplementary Fig. 2

Phylogeny (ITS) of Dictyonema obtained under ML. Branches are thickened for all bootstrap (BS) values ≥70. Placement of Galapagos species are in bold (PDF 301 kb)

Supplementary Table 1 (DOCX 69 kb)

Supplementary Table 2 (DOCX 172 kb)

Supplementary Table 3 (DOCX 46 kb)

Supplementary Table 4 (DOCX 76 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dal Forno, M., Bungartz, F., Yánez-Ayabaca, A. et al. High levels of endemism among Galapagos basidiolichens. Fungal Diversity 85, 45–73 (2017). https://doi.org/10.1007/s13225-017-0380-6

Download citation

Keywords

  • Lichens
  • Systematics
  • Biodiversity
  • Evolution
  • Lichenized basidiomycetes
  • Galapagos