Fungal Diversity

, Volume 76, Issue 1, pp 75–96 | Cite as

Extremotolerant rock inhabiting black fungi from Italian monumental sites

  • D. Isola
  • L. Zucconi
  • S. Onofri
  • G. Caneva
  • G. S. de Hoog
  • L. Selbmann
Article

Abstract

A wide sampling for isolating highly destructive and extremotolerant black fungi was performed from Italian monuments in selected historical sites which include the “Cortile della Pigna”, Vatican Museum and the St Peter colonnade (Vatican City State), the monumental cemetery of Bonaria (Cagliari), and other monuments in the city of Cagliari. Thirty out of seventy-four strains isolated were identified basing on ITS Blastn comparison. Based on multilocus phylogeny and morphological data, one new genus and species Lithophila guttulata, five new species Knufia marmoricola, K. vaticanii, K. karalitana, K. mediterranea and Exophiala bonariae, order Chaetothyriales and one new genus and species, Saxophila tyrrhenica, and two new species Vermiconia calcicola and Devriesia sardiniae, order Capnodiales, were proposed. Ecological considerations are put forward.

Keywords

Extremotolerance Monuments Microcolonial fungi Multilocus phylogeny 

Notes

Acknowledgments

The authors thank the Italian National Program for Antarctic Researches (PNRA) and the Italian National Antarctic Museum “Felice Ippolito” for funding the Culture Collection of Fungi From Extreme Environments (CCFEE). The Italian “Ordine Nazionale dei Biologi” is acknowledged for funding the project “Fungal deteriogens and stone monuments”. Professor Paola Meloni, Georgia Toreno and the laboratory “Colle di Bonaria”- University of Cagliari are acknowledged for kind collaboration during sampling. Superintendence of Heritage Landscape, Historical, Anthropological Heritage of Cagliari and Oristano, the district of Cagliari – Cemetery direction –, Prof. Antonio Paolucci Director of the Vatican Museum, Prof. Ulderico Santamaria and Mattia Tomassini Barbarossa, owner of Boyl Palace, are acknowledged for giving permission for sampling.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402Google Scholar
  2. Ascaso C, Wierzchos J, Castello R (1998) Study of the biogenic weathering of calcareous litheranite stones caused by lichens and endolithic organisms. Int Biodeterior Biodegrad 42:29–38CrossRefGoogle Scholar
  3. Badali H, Carvalho VO, Vicente V, Attili-Angelis D, Kwiatkowski IB, van den Ende AHG, de Hoog GS (2009) Cladophialophora saturnica sp. nov., a new opportunistic species of Chaetothyriales revealed using molecular data. Med Mycol 47:51–66PubMedCrossRefGoogle Scholar
  4. Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bjedov I, Tenaillon O, Gérard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409. doi: 10.1126/science.1082240 PubMedCrossRefGoogle Scholar
  6. Blasi C (2001) Carta del fitoclima dell’area romana (1:100.000). Inf Bot Ital 33:240–243Google Scholar
  7. Bogomolova EV, Minter DW (2003) A new microcolonial rock-inhabiting fungus from marble in Chersonesos (Crimea, Ukraine). Mycotaxon 86:195–204Google Scholar
  8. Brunner I, Plotze M, Rieder S, Zumsteg A, Furrer G, Frey B (2011) Pioneering fungi from the Damma glacier forefield in the Swiss Alps can promote granite weathering. Geobiology 465:266–279CrossRefGoogle Scholar
  9. Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Botanica Marina 48:73–79Google Scholar
  10. Caneva G, Lombardozzi V, Ceschin S, Casanova Municchia A, Salvadori O (2013) Unusual differential erosion due to endolithic microorganisms on limestone (Martvili, Georgia). J Cult Herit 15:538–545CrossRefGoogle Scholar
  11. Chomnunti P, Bhat DJ, Gareth Jones EB, Chukeatirote K, Bahkali AH et al (2012) Trichomeriaceae, a new sooty mould family of Chaetothyriales. Fungal Divers 56:63–76. doi: 10.1007/s13225-012-0197-2 CrossRefGoogle Scholar
  12. Crous PW, Schroers HJ, Groenewald JZ, Braun U, Schubert K (2006) Metulocladosporiella gen. nov. for the causal organism of Cladosporium speckle disease of banana. Mycol Res 110:264–275PubMedCrossRefGoogle Scholar
  13. Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47. doi: 10.3114/sim.2009.64.02 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Curtis MD, Gore J, Oliver RP (1994) The phylogeny of the tomato leaf mould fungus Cladosporium fulvum syn. Fulvia fulva by analysis of rDNA sequences. Curr Genet 25:318–322PubMedCrossRefGoogle Scholar
  15. de Hoog GS, McGinnis MR (1987) Ascomycetous black yeasts. Stud Mycol 30:187–199Google Scholar
  16. de Hoog GS, Zalar P, Urzì C, de Leo F, Yurlova NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Stud Mycol 43:31–37Google Scholar
  17. de Hoog GS, Vicente VA, Najafzadeh MJ, Harrak MJ, Badali H, Seyedmousavi S (2011) Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia 27:46–72Google Scholar
  18. De Leo F, Urzì C, de Hoog GS (1999) Two Coniosporium species from rock surfaces. Stud Mycol 43:70–79Google Scholar
  19. De Leo F, Urzì C, de Hoog GS (2003) A new meristematic fungus, Pseudotaeniolina globosa. Anton Leeuw J Microb 83:351–360CrossRefGoogle Scholar
  20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedPubMedCentralCrossRefGoogle Scholar
  21. Egidi E, de Hoog GS, Isola D, Onofri S, Quaedvlieg W, de Vries M, Verkley GJM, Stielow JB, Zucconi L, Selbmann L (2014) Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the dothidemycetes based on multi-locus phylogenies. Fungal Divers 65:127–165CrossRefGoogle Scholar
  22. Favero-Longo SE, Gazzano C, Girlanda M, Castelli D, Tretiach M, Baiocchi C, Piervittori R (2011) Physical and chemical deterioration of silicate and carbonate rocks by meristematic microcolonial fungi and endolithic lichens (Chaetothyriomycetidae). Geomicrobiol J 28:732–744CrossRefGoogle Scholar
  23. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 40:783–791CrossRefGoogle Scholar
  24. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  25. Gorbushina AA, Krumbein WE, Hamann CH, Panina L, Soukharjevski S, Wollenzien U (1993) Role of the black fungi in color change and biodeterioration of antique marbles. Geomicrobiol J 11:205–222CrossRefGoogle Scholar
  26. Gorfer M, Blumhoff M, Klaubauf S, Urban A, Inselsbacher E, Bandian D, Mitter B, Sessitsch A, Wanek W, Strauss J (2011) Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil. ISME J 5:1771–1783PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gostinčar C, Grube M, De Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11PubMedCrossRefGoogle Scholar
  28. Grapow L, Blasi C (1998) A comparison of the urban flora of different phytoclimatic regions in Italy. Glob Ecol Biogeogr 7:367–378CrossRefGoogle Scholar
  29. Gueidan C, Ruibal C, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gueidan C, Aptroot A, da Silva Cáceres ME, Badali H, Stenroos S (2014) A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog 13:1027–1039Google Scholar
  31. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  32. He F, Lin B, Sun J, Liu X (2013) Knufia aspidiotus sp. nov., a new black yeast from scale insects. Phytotaxa 153:39–50CrossRefGoogle Scholar
  33. Hubka V, Réblová M, Řehulka J, Selbmann L, Isola D, de Hoog GS, Kolařík M (2014) Bradymyces gen. nov. (Chaetothyriales, Trichomeriaceae), a new ascomycete genus accommodating poorly differentiated melanized fungi. Anton Leeuw J Microb 106:979–992. doi: 10.1007/s10482-014-0267-4 CrossRefGoogle Scholar
  34. Hutchison LJ, Untereiner WA, Hiratsuka Y (1995) Knufia cryptophialidica gen. et sp. nov., a dematiaceous hyphomycete isolated from black galls of trembling aspen (Populus tremuloides). Mycologia 87:902–908CrossRefGoogle Scholar
  35. Isola D (2010) Biodiversity, phylogeny and evolution of rock black fungi. Ph.D. dissertation, Università degli Studi della Tuscia, Viterbo, Italy. http://dspace.unitus.it/bitstream/2067/1068/1/disola_tesid.pdf
  36. Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013a) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. doi: 10.1007/s11046-013-9635-2 PubMedCrossRefGoogle Scholar
  37. Isola D, Selbmann L, Meloni P, Maracci E, Onofri S, Zucconi L (2013b) Detrimental rock black fungi and biocides: A study on the Monumental Cemetery of Cagliari. In: Rogerio-Candelera MA, Lazzari M, Cano E (eds) Science and Technology for the conservation of cultural heritage. CRC Press, London, pp 83–86CrossRefGoogle Scholar
  38. Jobb GA, von Haeseler A, Strimmer K (2004) TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kang JM, Jovine NM, Blaser JM (2006) A paradigm for direct stress induced mutation in prokaryotes. FASEB J 20:2476–2485. doi: 10.1096/fj.06-6209com PubMedCrossRefGoogle Scholar
  40. Li DM, Chen XR (2010) A new superficial fungal infection caused by Coniosporium epidermidis. J Am Acad Dermatol 63:725–727PubMedCrossRefGoogle Scholar
  41. Li DM, de Hoog G, Saunte DL, van den Ende AG, Chen X (2008) Coniosporium epidermidis sp. nov., a new species from human skin. Stud Mycol 61:131–136PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lombardozzi V, Castrignanò T, D’Antonio M, Casanova Municchia A, Caneva C (2012) An interactive database for an ecological analysis of stone biopitting. Int Biodeterior Biodegrad 73:8–15CrossRefGoogle Scholar
  43. Marvasi M, Donnarumma F, Frandi A, Mastromei G, Sterflinger K, Tiano P, Perito B (2012) Black microcolonial fungi as deteriogens of two famous marble statues in Florence, Italy. Int Biodeterior Biodegrad 68:36–44CrossRefGoogle Scholar
  44. Matsumoto T, Padhye AA, Ajello L, McGinnis MR (1986) Sarcinomyces phaeomuriformis: a new dematiaceous hyphomycete. J Med Vet Mycol 24:395–400PubMedCrossRefGoogle Scholar
  45. Mendoza L, Karuppayil SM, Szaniszlo PJ (1993) Calcium regulates in vitro dimorphism in chromoblastomycotic fungi. Mycoses 36:157–164PubMedCrossRefGoogle Scholar
  46. Nienow JA, Friedmann EI (1993) Terrestrial litophytic (rock) communities. In: Friedmann EI (ed) Antarctic Microbiology. Wiley-Liss, New York, pp 343–412Google Scholar
  47. Nylander JAA (2004) Mr AIC.pl. Programme distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  48. Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Mars conditions. Stud Mycol 61:99–109PubMedPubMedCentralCrossRefGoogle Scholar
  49. Onofri S, Anastasi A, Del Frate G, Di Piazza S, Garnero N, Guglielminetti M, Isola D, Panno L, Ripa C, Selbmann L, Varese GC, Voyron S, Zotti M, Zucconi L (2011) Biodiversity of rock, beach and water fungi. Plant Biosyst 145:978–987CrossRefGoogle Scholar
  50. Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran K, Rabbow E, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516PubMedCrossRefGoogle Scholar
  51. Onofri S, Zucconi L, Isola D, Selbmann L (2014) Rock-inhabiting fungi and their role in deterioration of stone monuments in the Mediterranean area. Plant Biosyst 148:384–391CrossRefGoogle Scholar
  52. Page RDM (1996) Tree View: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358Google Scholar
  53. Park HG, Managbanag JR, Stamenova EK, Jong SC (2004) Comparative analysis of common indoor Cladosporium species based on molecular data and conidial characters. Mycotaxon 89:441–451Google Scholar
  54. Plemenitaš A, Gunde-Cimerman N (2005) Cellular responses in the halophilic black yeast Hortaea werneckii to high environmental salinity. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 455–470Google Scholar
  55. Prenafeta-Boldú FX, Summerbell R, de Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130PubMedCrossRefGoogle Scholar
  56. Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, Burgess TI, Crous PW (2014) Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 33:1–40PubMedPubMedCentralCrossRefGoogle Scholar
  57. Réblová M, Untereiner WA, Réblová K (2013) Novel evolutionary lineages revealed in the Chaetothyriales (fungi) based on multigene phylogenetic analyses and comparison of its secondary structure. PLoS One 8(5), e63547PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ruibal C (2004) Isolation and characterization of melanized, slow growing fungi from semiarid rock surfaces of central Spain and Mallorca. Ph.D. Dissertation. Universidad Autónoma de Madrid/Merck, Sharp & Dohme de España, MadridGoogle Scholar
  59. Ruibal C, Gonzalo P, Bills GF (2005) Isolation and characterization of melanized fungi from limestone formations in Mallorca. Mycol Prog 4:23–38CrossRefGoogle Scholar
  60. Ruibal C, Platas G, Bills GF (2008) High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia 21:93–110PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133. doi: 10.3114/sim.2009.64.06 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Salvadori O (2000) Characterisation of endolithic communities of stone monuments and natural outcrops. In: Ciferri O, Tiano P Mastromei G (eds) Of microbes and art. The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage, pp 89–101Google Scholar
  63. Seifert KA, Nickerson NL, Corlett M, Jackson ED, Louis-Seize G, Davies RJ (2004) Devriesia, a new hyphomycete genus to accommodate heat-resistant, cladosporium-like fungi. Can J Bot 82:914–926. doi: 10.1139/b04-070 CrossRefGoogle Scholar
  64. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51:1–32Google Scholar
  65. Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20PubMedPubMedCentralCrossRefGoogle Scholar
  66. Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944PubMedCrossRefGoogle Scholar
  67. Selbmann L, Egidi E, Isola D, Onofri S, Zucconi Z, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese G (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst 147:237–246CrossRefGoogle Scholar
  68. Selbmann L, de Hoog GS, Zucconi L, Isola D, Onofri S (2014a) Black Yeasts From Cold Habitats. In: Buzzini P, Margesin R (eds) Yeasts from cold Habitats. Springer, Berlin, pp 173–189Google Scholar
  69. Selbmann L, Isola D, Egidi E, Zucconi L, Gueidan C, de Hoog GS, Onofri S (2014b) Mountain tips as reservoirs for new rock-fungal entities: Saxomyces gen. nov. and four new species from the Alps. Fungal Divers 65:167–182. doi: 10.1007/s13225-013-0234-9
  70. Selbmann L, Zucconi L, Isola D, Onofri S (2015) Rock black fungi: excellence in the extremes. From the Antarctic to Space. Curr Genet 61:335–345Google Scholar
  71. Sert HB, Sterflinger K (2010) A new Coniosporium species from historical marble monuments. Mycol Prog 9:353–359CrossRefGoogle Scholar
  72. Sert HB, Sümbül H, Sterflinger K (2007a) Microcolonial fungi from antique marbles in Perge/Side/Termessos (Antalya/Turkey). Anton Leeuw J Microb 91:217–227CrossRefGoogle Scholar
  73. Sert HB, Sümbül H, Sterflinger K (2007b) Sarcinomyces sideticae, a new black yeast from historical marble monuments in Side (Antalya, Turkey). Bot J Linn Soc 154:373–380CrossRefGoogle Scholar
  74. Sert HB, Sümbül H, Sterflinger K (2007c) A new species of Capnobotryella from monument surfaces. Mycol Res 111:1235–1241PubMedCrossRefGoogle Scholar
  75. Seyedmousavi S, Badali H, Chlebicki A, Zhao J, Prenafeta-Boldú FX, de Hoog GS (2011) Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzene and arsenic. Fungal Biol 115:1030–1037PubMedCrossRefGoogle Scholar
  76. Staley JT, Palmer F, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095PubMedCrossRefGoogle Scholar
  77. Sterflinger K (2006) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Rosa C, Gabor P (eds) Yeast handbook: biodiversity and ecophysiology of yeasts. Springer, New York, pp 505–518Google Scholar
  78. Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent of biopitting for Mediterranean marbles and limestones. Geomicrobiol J 14:219–230CrossRefGoogle Scholar
  79. Sterflinger K, de Baere R, de Hoog GS, de Wachter R, Krumbein WE, Haase G (1997) Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece). A Van Leeuw J Microb 72:349–363Google Scholar
  80. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  81. Tsuneda A, Currah RS (2004) Knufia endospora, a new clematiaceous hyphomycete from trembling aspen. Reports TMI 42:1–9Google Scholar
  82. Tsuneda A, Hambleton S, Currah RS (2011) The anamorph genus Knufia and its phylogenetically allied species in Coniosporium, Sarcinomyces, and Phaeococcomyces. Botany 89:523–536CrossRefGoogle Scholar
  83. Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968Google Scholar
  84. Wollenzien U, de Hoog GS, Krumbein WE, Urzi C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294CrossRefGoogle Scholar
  85. Wollenzien U, de Hoog GS, Krumbein WE, Uijthof JMJ (1997) Sarcinomyces petricola, a new microcolonial fungus from marble in the Mediterranean basin. Anton Leeuw J Microb 71:281–288CrossRefGoogle Scholar
  86. Xi L, Lu C, Sun J, Li X, Liu H, Zhang J, Xie Z, de Hoog GS (2009) Chromoblastomycosis caused by a meristematic mutant of Fonsecaea monophora. Med Mycol 47:77–80PubMedCrossRefGoogle Scholar
  87. Zakharova K, Tesei D, Marzban G, Dijksterhuis J, Wyatt T, Sterflinger K (2013) Microcolonial fungi on rocks: a life in constant drought? Mycopathologia 175:537–547PubMedPubMedCentralCrossRefGoogle Scholar
  88. Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38Google Scholar
  89. Zucconi L, Gagliardi M, Isola D, Onofri S, Andaloro MC, Pelosi C, Pogliani P, Selbmann L (2012) Biodeteriorigenous agents dwelling the wall paintings of the Holy Saviour’s Cave (Vallerano, Italy). Int Biodeterior Biodegrad 70:40–46CrossRefGoogle Scholar

Copyright information

© School of Science 2015

Authors and Affiliations

  • D. Isola
    • 1
  • L. Zucconi
    • 1
  • S. Onofri
    • 1
  • G. Caneva
    • 2
  • G. S. de Hoog
    • 3
  • L. Selbmann
    • 1
  1. 1.DEBUniversità degli Studi della TusciaViterboItaly
  2. 2.Department of SciencesUniversità Roma TreRomeItaly
  3. 3.CBS-KNAW Fungal Biodiversity CentreUtrechtThe Netherlands

Personalised recommendations