Fungal Diversity

, Volume 67, Issue 1, pp 11–19 | Cite as

Improving ITS sequence data for identification of plant pathogenic fungi

  • R. Henrik Nilsson
  • Kevin D. Hyde
  • Julia Pawłowska
  • Martin Ryberg
  • Leho Tedersoo
  • Anders Bjørnsgard Aas
  • Siti A. Alias
  • Artur Alves
  • Cajsa Lisa Anderson
  • Alexandre Antonelli
  • A. Elizabeth Arnold
  • Barbara Bahnmann
  • Mohammad Bahram
  • Johan Bengtsson-Palme
  • Anna Berlin
  • Sara Branco
  • Putarak Chomnunti
  • Asha Dissanayake
  • Rein Drenkhan
  • Hanna Friberg
  • Tobias Guldberg Frøslev
  • Bettina Halwachs
  • Martin Hartmann
  • Beatrice Henricot
  • Ruvishika Jayawardena
  • Ari Jumpponen
  • Håvard Kauserud
  • Sonja Koskela
  • Tomasz Kulik
  • Kare Liimatainen
  • Björn D. Lindahl
  • Daniel Lindner
  • Jian-Kui Liu
  • Sajeewa Maharachchikumbura
  • Dimuthu Manamgoda
  • Svante Martinsson
  • Maria Alice Neves
  • Tuula Niskanen
  • Stephan Nylinder
  • Olinto Liparini Pereira
  • Danilo Batista Pinho
  • Teresita M. Porter
  • Valentin Queloz
  • Taavi Riit
  • Marisol Sánchez-García
  • Filipe de Sousa
  • Emil Stefańczyk
  • Mariusz Tadych
  • Susumu Takamatsu
  • Qing Tian
  • Dhanushka Udayanga
  • Martin Unterseher
  • Zheng Wang
  • Saowanee Wikee
  • Jiye Yan
  • Ellen Larsson
  • Karl-Henrik Larsson
  • Urmas Kõljalg
  • Kessy Abarenkov
Article

Summary

Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult. Molecular (DNA sequence) data have emerged as crucial information for the taxonomic identification of plant pathogenic fungi, with the nuclear ribosomal internal transcribed spacer (ITS) region being the most popular marker. However, international nucleotide sequence databases are accumulating numerous sequences of compromised or low-resolution taxonomic annotations and substandard technical quality, making their use in the molecular identification of plant pathogenic fungi problematic. Here we report on a concerted effort to identify high-quality reference sequences for various plant pathogenic fungi and to re-annotate incorrectly or insufficiently annotated public ITS sequences from these fungal lineages. A third objective was to enrich the sequences with geographical and ecological metadata. The results – a total of 31,954 changes – are incorporated in and made available through the UNITE database for molecular identification of fungi (http://unite.ut.ee), including standalone FASTA files of sequence data for local BLAST searches, use in the next-generation sequencing analysis platforms QIIME and mothur, and related applications. The present initiative is just a beginning to cover the wide spectrum of plant pathogenic fungi, and we invite all researchers with pertinent expertise to join the annotation effort.

Keywords

Phytopathogenic fungi Molecular identification ITS Taxonomy Annotation 

Supplementary material

13225_2014_291_MOESM1_ESM.pdf (33 kb)
Supplementary Item 1The 39 journals screened for ITS sequences from type specimens/ex-type cultures of fungi described (or re-typified) during the period 2000–2012 (variously and as applicable). The time coverage of the journal is indicated. Only papers whose title suggested that one or more new species were described (or that one or more species were re-typified) were examined. In some few cases, individual articles were not clear on whether a sequence actually came from the type specimen or not, and we hope that ongoing efforts to standardize what data to provide (and how to provide them) when describing new species in a molecular context will be successful. (PDF 32 kb)
13225_2014_291_MOESM2_ESM.pdf (2.9 mb)
Supplementary Item 2Screenshots showing examples of how the user can interact with, and modify, the public fungal ITS sequences in UNITE. The processes illustrated include taxonomic re-annotation, addition of ecological and geographical metadata, annotation of basic sequence properties, and association of sequences with voucher specimens/cultures. Structured INSDC searches as well as browsing among species hypotheses are also shown. A manual for the PlutoF sequence management environment is available at http://unite.ut.ee/temp/plutof2/files/PlutoF_2.5_Manual_small.pdf (PDF 2956 kb)

References

  1. Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U (2010a) The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol 186:281–285PubMedCrossRefGoogle Scholar
  2. Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M, Kurina O, Ostonen I, Jõgeva J, Halapuu S, Põldmaa K, Toots M, Truu J, Larsson K-H, Kõljalg U (2010b) PlutoF - a web-based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol Bioinform 6:189–196Google Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barnes I, Crous PW, Wingfield BD, Wingfield MJ (2004) Multigene phylogenies reveal that red band needle blight is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Stud Mycol 50:551–565Google Scholar
  5. Bates ST, Ahrendt S, Bik HM, Bruns TD, Caporaso JG, Cole J, Dwan M, Fierer N, Gu D, Houston S, Knight R, Leff J, Lewis C, Maestre JP, McDonald D, Nilsson RH, Porras-Alfaro A, Robert V, Schoch C, Scott J, Taylor DL, Wegener Parfrey L, Stajich JE (2013) Meeting report: fungal ITS workshop (October 2012). Stand Genomic Sci 8:118–123PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger M, de Sousa F, Amend A, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson MK, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919Google Scholar
  7. Bidartondo M, Bruns TD, Blackwell M et al (2008) Preserving accuracy in GenBank. Science 319:5870CrossRefGoogle Scholar
  8. Britton KO, Liebhold AM (2013) One world, many pathogens! New Phytol 197:9–10PubMedCrossRefGoogle Scholar
  9. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cunha KCD, Sutton DA, Fothergill AW, Gené GJ, Cano J, Madrid H, Hoog SD, Crous PW, Guarro J (2013) In vitro antifungal susceptibility and molecular identity of 99 clinical isolates of the opportunistic fungal genus Curvularia. Diagn Microbiol Infect Dis 76:168–174PubMedCrossRefGoogle Scholar
  11. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430PubMedCrossRefGoogle Scholar
  12. Delaye L, García-Guzmán G, Heil M (2013) Endophytes versus biotrophic and necrotrophic pathogens – are fungal lifestyles evolutionarily stable traits? Fungal Divers 60:125–135CrossRefGoogle Scholar
  13. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194PubMedCrossRefGoogle Scholar
  14. Gauthier G, Keller N (2013) Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol 61:146–57PubMedCrossRefGoogle Scholar
  15. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713PubMedCrossRefPubMedCentralGoogle Scholar
  16. Heath TA, Hedtke SM, Hillis DM (2008) Taxon sampling and the accuracy of phylogenetic analyses. J Syst Evol 46:239–257Google Scholar
  17. Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47CrossRefGoogle Scholar
  18. Hyde KD, Udayanga D, Manamgoda DS, Tedersoo L, Larsson E, Abarenkov K, Bertrand YJK, Oxelman B, Hartmann M, Kauserud H, Ryberg M, Kristiansson E, Nilsson RH (2013) Incorporating molecular data in fungal systematics: a guide for aspiring researchers. Curr Res Environ Appl Mycol 3:1–32Google Scholar
  19. Kang S, Mansfield MAM, Park B, Geiser DM, Ivors KL, Coffey MD, Grünwald NJ, Martin FN, Lévesque CA, Blair JE (2010) The promise and pitfalls of sequence-based identification of plant pathogenic fungi and oomycetes. Phytopathology 100:732–737PubMedCrossRefGoogle Scholar
  20. Ko Ko TWK, Stephenson SL, Bahkali AH, Hyde KD (2011) From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Divers 50:113–120CrossRefGoogle Scholar
  21. Kõljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of Fungi. Mol Ecol 22:5271–5277PubMedCrossRefGoogle Scholar
  22. Kowalski T, Holdenrieder O (2009) The teleomorph of Chalara fraxinea, the causal agent of ash dieback. For Pathol 39:304–308CrossRefGoogle Scholar
  23. La Duc MT, Vaishampayan P, Nilsson RH, Torok T, Venkateswaran K (2012) Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars. Appl Environ Microbiol 78:5912–5922PubMedCrossRefPubMedCentralGoogle Scholar
  24. Lanzén A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, Øvreås L, Urich T (2012) CREST – classification resources for environmental sequence tags. PLoS One 7:e49334PubMedCrossRefPubMedCentralGoogle Scholar
  25. Maharachchikumbura SSN, Guo LD, Cai L, Chukeatirote E, Wu WP, Sun X, Crous PW, Bhat DJ, McKenzie EHC, Bahkali AH, Hyde KD (2012) A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Divers 56:95–129CrossRefGoogle Scholar
  26. Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD (2012) A phylogenetic and taxonomic re-evaluation of the Bipolaris, Cochliobolus, Curvularia complex. Fungal Divers 56:131–144Google Scholar
  27. Nakamura Y, Cochrane G, Karsch-Mizrachi I (2013) The international nucleotide sequence database collaboration. Nucleic Acids Res 41:D21–D24PubMedCrossRefPubMedCentralGoogle Scholar
  28. Nilsson RH, Ryberg M, Sjökvist E, Abarenkov K (2011) Rethinking taxon sampling in the light of environmental sequencing. Cladistics 27:197–203CrossRefGoogle Scholar
  29. Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E, Hartmann M, Schoch CL, Nylander JAA, Bergsten J, Porter TM, Jumpponen A, Vaishampayan P, Ovaskainen O, Hallenberg N, Bengtsson-Palme J, Eriksson KM, Larsson K-H, Larsson E (2012) Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4:37–63CrossRefGoogle Scholar
  30. Pautasso M (2013) Fungal under-representation is (slowly) diminishing in the life sciences. Fungal Ecol 6:129–135CrossRefGoogle Scholar
  31. Pennisi E (2008) “Proposal to ‘wikify’ GenBank meets stiff resistance”. Science 319:1598–1599PubMedCrossRefGoogle Scholar
  32. Queloz V, Grunig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O (2011) Cryptic speciation in Hymenoscyphus albidus. For Pathol 41:133–142CrossRefGoogle Scholar
  33. Robbertse B, Schoch CL, Robert V et al. (2014) Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database, in pressGoogle Scholar
  34. Rossman AY, Palm-Hernández ME (2008) Systematics of plant pathogenic fungi: why it matters. Plant Dis 10:1376–1386CrossRefGoogle Scholar
  35. Ryberg M, Kristiansson E, Sjökvist E, Nilsson RH (2009) An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web-based tool for the exploration of fungal diversity. New Phytol 181:471–477PubMedCrossRefGoogle Scholar
  36. Samerpitak K, Van der Linde E, Choi HJ, Gerrits van den Ende AHG, Machouart M, Gueidan C, de Hoog GS (2014) Taxonomy of Ochroconis, a genus including opportunistic pathogens on humans and animals. Fungal Divers 65:89–126. doi:10.1007/s13225-013-0253-6
  37. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCrossRefPubMedCentralGoogle Scholar
  38. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246PubMedCrossRefPubMedCentralGoogle Scholar
  39. Seifert K, Rossman AY (2010) How to describe a new fungal species. IMA Fungus 1:109–116PubMedCrossRefPubMedCentralGoogle Scholar
  40. Sharma G, Kumar N, Weir BS, Hyde KD, Shenoy BD (2013) Apmat gene can resolve Colletotrichum species: a case study with Mangifera indica. Fungal Divers 61:117–138CrossRefGoogle Scholar
  41. Shenoy BD, Rajesh J, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Divers 26:1–54Google Scholar
  42. Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW (2009) The fungi. Curr Biol 19:R840–R845PubMedCrossRefPubMedCentralGoogle Scholar
  43. Tedersoo L, Abarenkov K, Nilsson RH, Schussler A, Grelet G-A, Kohout P, Oja J, Bonito GM, Veldre V, Jairus T, Ryberg M, Larsson K-H, Kõljalg U (2011) Tidying up international nucleotide sequence databases: ecological, geographical, and sequence quality annotation of ITS sequences of mycorrhizal fungi. PLoS One 6:e24940PubMedCrossRefPubMedCentralGoogle Scholar
  44. Udayanga D, Liu XX, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD (2012) A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Divers 56:157–171CrossRefGoogle Scholar
  45. Unterseher M, Peršoh D, Schnittler M (2013) Leaf-inhabiting endophytic fungi of European Beech (Fagus sylvatica L.) co-occur in leaf litter but are rare on decaying wood of the same host. Fungal Divers 60:43–54CrossRefGoogle Scholar
  46. U’Ren JM, Dalling JW, Gallery RE, Maddison DR, Davis EC, Gibson CM, Arnold EA (2009) Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analyzing fungal environmental samples. Mycol Res 113:432–449PubMedCrossRefGoogle Scholar
  47. Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013) Alternaria redefined. Stud Mycol 75:171–212PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Mushroom Research Foundation 2014

Authors and Affiliations

  • R. Henrik Nilsson
    • 1
  • Kevin D. Hyde
    • 2
    • 3
  • Julia Pawłowska
    • 4
  • Martin Ryberg
    • 5
  • Leho Tedersoo
    • 6
  • Anders Bjørnsgard Aas
    • 7
  • Siti A. Alias
    • 8
  • Artur Alves
    • 9
  • Cajsa Lisa Anderson
    • 1
  • Alexandre Antonelli
    • 1
  • A. Elizabeth Arnold
    • 10
  • Barbara Bahnmann
    • 11
  • Mohammad Bahram
    • 6
  • Johan Bengtsson-Palme
    • 12
  • Anna Berlin
    • 13
  • Sara Branco
    • 14
  • Putarak Chomnunti
    • 3
  • Asha Dissanayake
    • 2
    • 3
    • 15
  • Rein Drenkhan
    • 16
  • Hanna Friberg
    • 13
  • Tobias Guldberg Frøslev
    • 17
  • Bettina Halwachs
    • 18
    • 19
  • Martin Hartmann
    • 20
    • 21
  • Beatrice Henricot
    • 22
  • Ruvishika Jayawardena
    • 2
    • 3
    • 15
  • Ari Jumpponen
    • 23
  • Håvard Kauserud
    • 7
  • Sonja Koskela
    • 24
  • Tomasz Kulik
    • 25
  • Kare Liimatainen
    • 26
  • Björn D. Lindahl
    • 13
  • Daniel Lindner
    • 27
  • Jian-Kui Liu
    • 2
    • 3
  • Sajeewa Maharachchikumbura
    • 2
    • 3
  • Dimuthu Manamgoda
    • 2
    • 3
  • Svante Martinsson
    • 1
  • Maria Alice Neves
    • 28
  • Tuula Niskanen
    • 26
  • Stephan Nylinder
    • 29
  • Olinto Liparini Pereira
    • 30
  • Danilo Batista Pinho
    • 30
  • Teresita M. Porter
    • 31
  • Valentin Queloz
    • 32
  • Taavi Riit
    • 6
  • Marisol Sánchez-García
    • 33
  • Filipe de Sousa
    • 1
  • Emil Stefańczyk
    • 34
  • Mariusz Tadych
    • 35
  • Susumu Takamatsu
    • 36
  • Qing Tian
    • 2
    • 3
  • Dhanushka Udayanga
    • 2
    • 3
  • Martin Unterseher
    • 37
  • Zheng Wang
    • 38
  • Saowanee Wikee
    • 3
  • Jiye Yan
    • 15
  • Ellen Larsson
    • 1
  • Karl-Henrik Larsson
    • 39
  • Urmas Kõljalg
    • 6
    • 40
  • Kessy Abarenkov
    • 40
  1. 1.Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
  2. 2.Institute of Excellence in Fungal ResearchMae Fah Luang UniversityChiang RaiThailand
  3. 3.School of ScienceMae Fah Luang UniversityChiang RaiThailand
  4. 4.Department of Plant Systematics and Geography, Faculty of BiologyUniversity of WarsawWarsawPoland
  5. 5.Department of Organismal BiologyUppsala UniversityUppsalaSweden
  6. 6.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  7. 7.Microbial Evolution Research GroupUniversity of OsloOsloNorway
  8. 8.Institute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia
  9. 9.Department of Biology, CESAMUniversity of AveiroAveiroPortugal
  10. 10.School of Plant SciencesThe University of ArizonaTucsonUSA
  11. 11.Laboratory of Environmental MicrobiologyInstitute of Microbiology ASCRPrague 4Czech Republic
  12. 12.Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
  13. 13.Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
  14. 14.University of California at BerkeleyBerkeleyUSA
  15. 15.Institute of Plant and Environment ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  16. 16.Institute of Forestry and Rural EngineeringEstonian University of Life SciencesTartuEstonia
  17. 17.Natural History Museum of DenmarkKøbenhavn KDenmark
  18. 18.Institute for Genomics and BioinformaticsGraz University of TechnologyGrazAustria
  19. 19.Core Facility BioinformaticsAustrian Centre of Industrial BiotechnologyGrazAustria
  20. 20.Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLBirmensdorfSwitzerland
  21. 21.Molecular EcologyInstitute for Sustainability Sciences, AgroscopeZurichSwitzerland
  22. 22.Plant PathologyThe Royal Horticultural Society, WisleyWokingUK
  23. 23.Division of BiologyKansas State UniversityManhattanUSA
  24. 24.Metapopulation Research Group, Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  25. 25.Department of Diagnostics and Plant PathophysiologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  26. 26.Plant Biology, Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  27. 27.US Forest Service, Northern Research StationCenter for Forest Mycology ResearchMadisonUSA
  28. 28.Departamento Botânica, PPG Biologia de Fungos, Algas e PlantasUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  29. 29.Department of BotanySwedish Natural History MuseumStockholmSweden
  30. 30.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil
  31. 31.Department of BiologyMcMaster UniversityHamiltonCanada
  32. 32.ETH Zürich, Institute for Integrative BiologyZürichSwitzerland
  33. 33.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA
  34. 34.Plant Breeding and Acclimatization Institute-National Research InstituteMłochów Research CentreMłochówPoland
  35. 35.Department of Plant Biology and Pathology, School of Environmental and Biological SciencesRutgers, The State University of New JerseyNew BrunswickUSA
  36. 36.Laboratory of Plant Pathology, Faculty of BioresourcesMie UniversityTsu-cityJapan
  37. 37.Institute of Botany and Landscape EcologyErnst-Moritz-Arndt UniversityGreifswaldGermany
  38. 38.Biostatistics DepartmentYale School of Public HealthNew HavenUSA
  39. 39.Natural History MuseumBlindernNorway
  40. 40.Natural History MuseumUniversity of TartuTartuEstonia

Personalised recommendations