Advertisement

Fungal Diversity

, Volume 66, Issue 1, pp 1–36 | Cite as

The sooty moulds

  • Putarak Chomnunti
  • Sinang Hongsanan
  • Begoña Aguirre-Hudson
  • Qing Tian
  • Derek Peršoh
  • Manpreet K. Dhami
  • Aisyah S. Alias
  • Jianchu Xu
  • Xingzhong Liu
  • Marc Stadler
  • Kevin D. Hyde
Article

Abstract

Sooty moulds are a remarkable, but poorly understood group of fungi. They coat fruits and leaves superficially with black mycelia, which reduces photosynthesis rates of host plants. Few researchers have, however, tried to quantify their economic importance. Sooty moulds have been well-studied at the morphological level, but they are poorly represented in a natural classification based on phylogeny. Representatives are presently known in Antennulariellaceae, Capnodiaceae, Chaetothyriaceae, Coccodiniaceae, Euantennariaceae, Metacapnodiaceae and Trichomeriaceae and several miscellaneous genera. However, molecular data is available for only five families. Most sooty mould colonies comprise numerous species and thus it is hard to confirm relationships between genera or sexual and asexual states. Future studies need to obtain single spore isolates of species to test their phylogenetic affinities and linkages between morphs. Next generation sequencing has shown sooty mould colonies to contain many more fungal species than expected, but it is not clear which species are dominant or active in the communities. They are more common in tropical, subtropical and warm temperate regions and thus their prevalence in temperate regions is likely to increase with global warming. Sooty moulds are rarely parasitized by fungicolous taxa and these may have biocontrol potential. They apparently grow in extreme environments and may be xerophilic. This needs testing as xerophilic taxa may be of interest for industrial applications. Sooty moulds grow on sugars and appear to out-compete typical “weed” fungi and bacteria. They may produce antibiotics for this purpose and their biochemical potential for obtaining novel bioactive compounds for medical application is underexplored.

Keywords

Antibiotics Capnodiales Chaetothyriales Global warming Life cycle Phylogeny Xerophiles 

Notes

Acknowledgments

This work was carried out using a grant to the first author by the Office of the Higher Education Commission of Thailand. We would like to thank DJ Bhat who encouraged and advised on many parts of this paper; Cecile Gueidan who advised on the phylogeny part; Saranyaphat Boonmee for observing herbarium specimens from BPI; and Bevan Weir and Patrick Garvey for discussions and comments on next generation sequencing and NZ sooty moulds sections. The curator of K and PDD are especially thanked for loaning herbarium specimens. H. Voglmayr & W. Jaklitsch are thanked for supplying a fresh collection. Additional support is also from the CGIAR Research Program 6: Forests, Trees and Agroforestry.

Supplementary material

13225_2014_278_MOESM1_ESM.docx (27 kb)
Supplementary Table 1 (DOCX 26 kb)

References

  1. Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M, Kurina O, Ostonen I, Jõgeva J, Halapuu S, Põldmaa K, Toots M, Trrruu J, Larsson KH, Kõljalg U (2010) PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol Bioinform Online 6:189PubMedCentralGoogle Scholar
  2. Alves A, Crous PW, Correia A, Phillips AJL (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers 28(1):1–13Google Scholar
  3. Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19(24):5555–5565. doi: 10.1111/j.1365-294X.2010.04898 PubMedGoogle Scholar
  4. Ando K (1992) A study of terrestrial aquatic hyphomycetes. Trans Mycol Soc Jpn 33:415–425Google Scholar
  5. Aragão PHA, Andrade CGTJ, Ota AT, Costa MF (2012) Relationship between Fe 2+ Ca 2+ ions and cyclodextrin in olive trees infected with sooty mold. J Phys Conf Ser 371, art. no. 012029Google Scholar
  6. Auclair JL (1963) Aphid feeding and nutrition. Annu Rev Entomol 8:439–490Google Scholar
  7. Baldrian P, Vetrovsky T, Cajthaml T, Dobiasova P, Petrankova M, Snajdr J, Eichlerova I (2013) Estimation of fungal biomass in forest litter and soil. Fungal Ecol 6(1):1–11. doi: 10.1016/j.funeco.2012.10.002 Google Scholar
  8. Barr ME (1987) Prodomus to class loculoascomycetes. University of Massachusetts, AmherstGoogle Scholar
  9. Batista AC (1959) Monografia dos fungos micropeltaceae. Publicações Instituto de Micologia da Universidade do Recife 56:1–519Google Scholar
  10. Batista AC, Ciferri R (1962) The chaetothyriales. Sydowia 3:1–129Google Scholar
  11. Batista AC, Ciferri R (1963a) Capnodiales. Saccardoa 2:1–296Google Scholar
  12. Batista AC, Ciferri R (1963b) The sooty–molds of the family asbolisiaceae. Quad Ist Bot Univ Lab Crittogam Pavia 31:1–229Google Scholar
  13. Batista AC, Nascimento ML (1957) Alguns novos fungos imperfeitos do complex de fumagina. An Soc Biol Pernambuco 15(2):345–353Google Scholar
  14. Baute MA, Deffieux G, Baute R, Neveu A (1978) New antibiotics from the fungus Epicoccum nigrum. I. Fermentation, isolation and antibacterial properties. J Antibiot (Tokyo) 31(11):1099–1101Google Scholar
  15. Beggs JR, Karl BJ, Wardle DA, Bonner KI (2005) Soluble carbon production by honeydew scale insects in a New Zealand beech forest. N Z J Ecol 29:105–115Google Scholar
  16. Berkeley MJ, Desmazières JBHJ (1849) On some moulds referred by authors to Fumago and to certain allied or analogous forms. J Hortic Soc London 4:3–19Google Scholar
  17. Bussaban B, Boontim N, Lamyong S (2011) Edible gelatinized sooty mold species from Thailand. In Proceedings of The National Conference on Mushroom Science. Chiang Mai, ThailandGoogle Scholar
  18. Byrami F, Khodaparast SA, Pedramfar H (2013) New records of citrus sooty mold fungi from North of Iran. JCP 2(3):369–374Google Scholar
  19. Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204Google Scholar
  20. Cannon PF, Kirk PM (2007) Fungal families of the world. CAB International, WallingfordGoogle Scholar
  21. Cannon PF, Hawksworth DL, Sherwood-Pike MA (1985) The British ascomycotina, an annotated checklist. Commonwealth Agricultural Bureaux, SloughGoogle Scholar
  22. Carlton C, Leschen RA (2007) Descriptions of soronia complex (coleoptera: nitidulidae: nitidulinae) larvae of New Zealand with comments on life history and taxonomy. N Z Entomol 30:41–51Google Scholar
  23. Chadderton W, Ryan P, Winterbourn M (2003) Distribution, ecology, and conservation status of freshwater idoteidae (isopoda) in southern New Zealand. J R Soc N Z 33:529–548Google Scholar
  24. Cheewangkoon R, Groenewald JZ, Summerell BA, Hyde KD, To-anun C, Crous PW (2009) Myrtaceae, a cache of fungal biodiversity. Persoonia 23:55–85PubMedCentralPubMedGoogle Scholar
  25. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613PubMedCentralPubMedGoogle Scholar
  26. Chomnunti P, Schoch CL, Aguirre-Hudson B, Ko Ko TW, Hongsanan S, Jones EBG, Kodserb R, Chukeatirote E, Bahkali AH, Hyde KD (2011) Capnodiaceae. Fungal Divers 51(1):103–134PubMedCentralPubMedGoogle Scholar
  27. Chomnunti P, Bhat DJ, Jones EBG, Chukeatirote E, Bahkali AH, Hyde KD (2012a) Trichomeriaceae, a new sooty mould family of chaetothyriales. Fungal Divers 56:63–76Google Scholar
  28. Chomnunti P, Ko Ko TW, Chukeatirote E, Cai L, Jones EBG, Kodsueb R, Chen H, Hassan BA, Hyde KD (2012b) Phylogeny of chaetothyriaceae in northern Thailand including three new species. Mycologia 104:382–395PubMedGoogle Scholar
  29. Collado J, Platas G, Paulus B, Bills GF (2007) High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Ecol 60(3):521–533PubMedGoogle Scholar
  30. Collins SP, Pope RK, Scheetz RW, Ray RI, Wagner PA, Little BJ (1993) Advantages of environmental scanning electron microscopy in studies of microorganisms. Microsc Res Tech 25:398–405PubMedGoogle Scholar
  31. Crane JL, Hughes SJ (1982) Capnocheirides: a new generic name for Torula rhododendri. Mycologia 74(5):752–758Google Scholar
  32. Crous PW, Braun U, Groenewald JZ (2007) Mycosphaerella is polyphyletic. Stud Mycol 58:1–3PubMedCentralPubMedGoogle Scholar
  33. Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ (2009a) Phylogenetic lineages in the capnodiales. Stud Mycol 64:17–47PubMedCentralPubMedGoogle Scholar
  34. Crous PW, Verkley GJM, Groenewald JZ, Samson RA (eds) (2009b) Fungal biodiversity. CBS Laboratory Manual Series Centraalbureau voor Schimmelcultures, UtrechtGoogle Scholar
  35. Dalvi MB, Godes SK, Shinde AK, Patil BP (2002) Evaluation of cleaning agents for sooty mould (Capnodium species) affected mango (Mangifera indica) fruits. Indian J Agric Sci 72(4):223–224Google Scholar
  36. de Filho JPL, Paiva ÉAS (2006) The effects of sooty mold on photosynthesis and mesophyll structure of mahogany (Swietenia macrophylla King., Meliaceae). Bragantia 65(1):11–17Google Scholar
  37. Deffieux G, Baute MA, Baute R, Filleau MJ (1978) New antibiotics from the fungus Epicoccum nigrum. II. Epicorazine a: structure elucidation and absolute configuration. J Antibiot 31:1102–1105PubMedGoogle Scholar
  38. Descals E, Peláez F, López Llorca LV (1995) Fungal spora of stream foam from central Spain I. Nova Hedwigia 60:533–550Google Scholar
  39. Dhami MK, Gardner-Gee R, Van Houtte J, Villas-Bôas SG, Beggs JR (2011) Species-specific chemical signatures in scale insect honeydew. J Chem Ecol 37:1231–1241PubMedGoogle Scholar
  40. Dhami MK, Weir BS, Taylor MW, Beggs JR (2013) Diverse honeydew-consuming fungal communities associated with scale insects. PLoS ONE 8(7):e70316. doi: 10.1371/journal.pone.0070316 PubMedCentralPubMedGoogle Scholar
  41. DiGuistini S, Liao NY, Platt D, Robertson G, Seidel M, Chan SK, Docking TR, Birol I, Holt RA, Hirst M, Mardis E, Marra MA, Hamelin RC, Bohlmann J, Breuil C, Jones SJM (2009) De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and illumina sequence data. Genome Biol 10:R94PubMedCentralPubMedGoogle Scholar
  42. Dungan RJ, Turnbull MH, Kelly D (2007) The carbon costs for host trees of a phloem-feeding herbivore. J Ecol 95:603–613Google Scholar
  43. Eriksson OE (1981) The families of bitunicate Ascomycetes. Opera Botanica 60:1–209Google Scholar
  44. Ewaze JO, Summerbell RC, Scott JA (2007) Physiological studies of the warehouse staining fungus, Baudoinia compniacensis. Mycol Res 111(12):1422–1430PubMedGoogle Scholar
  45. Faull JL, Olejnik I, Ingrouille M, Reynolds D (2002) A reassessment of the taxonomy of some tropical sooty moulds. Trop Mycol 2:33–40Google Scholar
  46. Fiori M (2001) Iron in olive tree leaves in the Mediterranean area. J Radioanal Nucl Chem 249(2):509–512Google Scholar
  47. Flessa F, Rambold G (2013) Diversity of the Capnocheirides rhododendri-dominated fungal community in the phyllosphere of Rhododendron ferrugineum L. Nova Hedwigia 97(1–2):19–53. doi: 10.1127/0029-5035/2013/00xx Google Scholar
  48. Flessa F, Peršoh D, Gerhard R (2012) Annuality of central European deciduous tree leaves delimits community development of epifoliar pigmented fungi. Fungal Ecol 5:554–561Google Scholar
  49. Fraser L (1935) An investigation of the sooty mould of New South Wales IV the species of the Eucapnodieae. Proc Linnean Soc NSW 40:159–178Google Scholar
  50. Friend RJ (1965a) What is Fumago vagans? Trans Br Mycol Soc 48(3):371–375Google Scholar
  51. Friend RJ (1965b) A study of sooty mould on lime trees (Tilia × vulgaris). Trans Br Mycol Soc 48(3):367–370Google Scholar
  52. Gams W, Baral HO, Jaklitsch WM, Kirschner R, Stadler M (2012) Clarifications needed concerning the new article 59 dealing with pleomorphic fungi. IMA Fungus 3:175–177PubMedCentralPubMedGoogle Scholar
  53. Gardner G (1849) Extracts from a report by George Gardner, Esq., on the coffee blight of Ceylon, addressed to the Seceretary to Government. J Hort Soc London 4:1–6Google Scholar
  54. Geiser DM, Gueidan C, Miadlikowska J, Lutzoni F, Kauff F, Hofstetter V, Fraker E, Schoch CL, Tibell L, Untereiner WA, Aptroot A (2006) Eurotiomycetes: eurotiomycetidae and chaetothyriomycetidae. Mycologia 98(6):1053–1064PubMedGoogle Scholar
  55. Gönczöl J, Révay A (2006) Species diversity of rainborne hyphomycete conidia from living trees. Fungal Divers 22:37–54Google Scholar
  56. Gong M (1993) Notes of rattan diseases. For Res (China) 6(5):565–568Google Scholar
  57. Guarneri F, Guarneri C, Cannavò SP, Guarneri B (2008) Dyschromia of hands and bronchial asthma caused by sooty molds (2008). Am J Clin Dermatol 9(5):341–343PubMedGoogle Scholar
  58. Gueidan C, Ruibal C, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119PubMedCentralPubMedGoogle Scholar
  59. Gueidan C, Ruibal C, de Hoog GS, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996PubMedGoogle Scholar
  60. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  61. Hansford GC (1946) The foliicolous Ascomycetes, their parasites and associated fungi. Mycol Pap 15:1–240Google Scholar
  62. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci O, Aime C, Asan A, Bai FY, de Beer ZW, Begerow D, Berikten D, Boekhout T, Buchanan PK, Burgess T, Buzina W, Cai L, Cannon PF, Crane JL, Damm U, Daniel HM, van Diepeningen AD, Druzhinina I, Dyer PS, Eberhardt U, Fell JW, Frisvad JC, Geiser DM, Geml J, Glienke C, Gräfenhan T, Groenewald JZ, Groenewald M, de Gruyter J, Guého-Kellermann E, Guo LD, Hibbett DS, Hong SB, de Hoog GS, Houbraken J, Huhndorf SM, Hyde KD, Ismail A, Johnston PR, Kadaifciler DG, Kirk PM, Kõljalg U, Kurtzman CP, Lagneau PE, Lévesque CA, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh MJ, Norvell L, Ozerskaya SM, Oziç R, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, Schnürer J, Schroers HJ, Shivas R, Slippers B, Spierenburg H, Takashima M, Taşkın E, Thines M, Thrane U, Uztan AH, van Raak M, Varga J, Vasco A, Verkley G, Videira SI, de Vries RP, Weir BS, Yilmaz N, Yurkov A, Zhang N (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112PubMedCentralPubMedGoogle Scholar
  63. He F (2011) Microbial community from Septobasidium associated scale insects. A dissertation for master’s degree, University of Science and Technology of China, 73pGoogle Scholar
  64. He F, Lin B, Sun JZ, Liu XZ (2013) Knufia aspidiotus sp. nov., a new black yeast from scale insects. Phytotaxa 153(1):39–50Google Scholar
  65. Herath K, Jayasuriya H, Zink DL, Sigmund J, Vicente F, de la Crusz M, Basilio A, Bills GF, Polishook JD, Donald R, Phillips J, Goetz M, Singh SB (2012) Isolation, structure elucidation, and antibacterial activity of methiosetin, a tetramic acid from a tropical sooty mold (Capnodium sp.). J Nat Prod 75(3):420–424PubMedGoogle Scholar
  66. Höhnel F (1910) Fragmente zur Mykologie (Xi Mitteilung, Nr. 527 bis 573) Sitsungsber, Kaiserl. Akad Wiss Math-Naturwiss Cl Abt 1 119:618–679Google Scholar
  67. Hongsanan S, Chomnunti P, Crous PW, Chukeatrote E, Hyde KD (2014) Introducing Chaetothyriothecium, a new genus of Microthyriales. Phytotaxa in press.Google Scholar
  68. Hosagoudar VB, Riju MC (2011) Some interesting Meliolaceae members from Western Ghats Region of Kerala State. Plant Pathol Quar 1(2):121–129Google Scholar
  69. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755PubMedGoogle Scholar
  70. Hughes SJ (1966) New Zealand fungi 7. Capnocybe and Capnophialophora, new form genera of sooty moulds. N Z J Bot 4:333–353Google Scholar
  71. Hughes SJ (1972) New Zealand fungi 17, pleomorphism in Euantennariaceae and Metacapnodiaceae, two families of sooty moulds. N Z J Bot 10:225–242Google Scholar
  72. Hughes SJ (1976) Sooty moulds. Mycologia 68(4):693–820Google Scholar
  73. Hughes SJ (1983) New Zealand fungi. 32. Janetia capnophila sp. nov. and some allies. N Z J Bot 21(2):177–182Google Scholar
  74. Hughes SJ (2000) Antennulariella batistae n.sp. and its Capnodendron and Antennariella synanamorphs with notes on Capnodium capsuliferum. Can J Bot 78:1215–1226Google Scholar
  75. Hughes SJ (2002) Capnokyma rossmanae, a new species of sooty molds. Mycologia 93(3):603–605Google Scholar
  76. Hughes SJ (2003) Capnofrasera dendryphioides, a new genus and species of sooty moulds. N Z J Bot 41(1):139–146Google Scholar
  77. Hughes SJ (2007) Heteroconium and Pirozynskiella n. gen., with comments on conidium transseptation. Mycologia 99(4):628–638PubMedGoogle Scholar
  78. Hughes SJ, Crane JL (2006) A new name for Torula glutinosa in Heteroconium. Mycologia 98(1):141–143PubMedGoogle Scholar
  79. Hughes SJ, Seifert KA (2012) Taxonomic and nomenclatural notes on sooty mould name based on species mixtures: Hormiscium handelii and Torula lecheriana. Mycoscience 53:17–24Google Scholar
  80. Hughes SJ, Atkinson TJ, Seifert KA (2012) New Zealand fungi 37: two new species of the sooty mould genus Metacapnodium with dictyoseptate ascospores. N Z J Bot 50(4):381–387Google Scholar
  81. Hyde KD, Jones EBG, Liu JK, Ariyawansha H, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous P, Dai DQ, Diederich P, Dissanayake A, Doilom M, Doveri F, Hongsanan S, Jayawardena R, Lawrey JD, Li YM, Liu YX, Lücking R, Monkai J, Nelsen MP, Phookamsak R, Muggia L, Pang KL, Senanayake I, Shearer CA, Wijayawardene N, Wu HX, Thambugala M, Suetrong S, Tanaka K, Wikee S, Zhang Y, Hudson BA, Alias SA, Aptroot A, Bahkali AH, Bezerra LJ, Bhat JD, Camporesi E, Chukeatirote E, Hoog SD, Gueidan C, Hawksworth DL, Hirayama K, Kang JC, Knudsen K, Li WJ, Liu ZY, McKenzie EHC, Miller AN, Nadeeshan D, Phillip AJL, Mapook A, Raja HA, Tian Q, Zhang M, Scheuer C, Schumm F, Taylor J, Yacharoen S, Tibpromma S, Wang Y, Yan J, Li X (2013) Families of dothideomycetes. Fungal Divers 63:1–313Google Scholar
  82. Jamadar MM, Balikai RA, Sataraddi AR (2009) Status of diseases on ber (Ziziphus mauritiana Lamarck) in India and their management options. Acta Horticult 840:383–390Google Scholar
  83. Johow F (1896) Estudio Sobre la Flora de las Islas de Juan Fernández. Kessinger Publishing, SantiagoGoogle Scholar
  84. Jouraeva VA, Johnson DL, Hassett JP, Nowak DJ, Shipunova NA, Barbarossa D (2006) Role of sooty mold fungi in accumulation of fine-particle-associated PAHs and metals on deciduous leaves. Environ Res 102:272–282PubMedGoogle Scholar
  85. Kamal, Verma RV, Morgan-Jones G (1986) Notes on Hyphomycetes. LI. Kameshwaromyces, a new foliicolous, sooty mold-like genus from Madhya Pradesh, India. Mycotaxon 25(1):247–250Google Scholar
  86. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64PubMedGoogle Scholar
  87. Kessler Jr KJ (1992) How to recognize and control sooty molds HT-69 (online). U.S. Department of Agriculture, Forest Service, Northern Area State and Private Forestry, Broomall, PA. Available from: www.treesearch.fs.fed.us/pubs/10925
  88. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CAB International, WallingfordGoogle Scholar
  89. Laatsch H (2012) AntiBase 2012 The natural compound identifier. Wiley-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  90. Labandeira CC (2006) Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arthropod Syst Phylogeny 64:53–94Google Scholar
  91. Laemmlen FF (2011) Sooty mold. integrated pest management for home gardeners and landscape professionals. Pest notes, University of California. Agriculture and Natural Resources, USA. Retrieved November 12, 2012, from http://www.ipm.ucdavis.edu/PDF/PESTNOTES/pnsootymold.pdf
  92. Lamborn AR (2009) Black, sooty mold on lanscape plants. University of Florida, IFAS ExtensionGoogle Scholar
  93. Leschen RA, Buckley TR, Harman HM, Shulmeister J (2008) Determining the origin and age of the Westland beech (Nothofagus) gap, New Zealand, using fungus beetle genetics. Mol Ecol 17:1256–1276PubMedGoogle Scholar
  94. Léveillé JH (1847) Mycologie, mycétologie. In D’Orbigny, Dictionnaire univ d’Hist nat 9:261–303Google Scholar
  95. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers – a user's guide. New Phytol 199(1):288–299. doi: 10.1111/nph.12243 PubMedCentralPubMedGoogle Scholar
  96. Lindner DL, Banik MT (2011) Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycologia 103:731–740PubMedGoogle Scholar
  97. Liu JK, Phookamsak R, Doilom M, Wikee S, Li YM, Ariyawansha H, Boonmee S, Chomnunti P, Dai DQ, Bhat JD, Romero AI, Zhuang WY, Monkai J, Jones EBG, Chukeatirote E, Ko Ko TW (2012) Towards a natural classification of Botryosphaeriales. Fungal Divers 57(1):149–210Google Scholar
  98. Lumbsch HT, Huhndorf SM (2010) Outline of ascomycota–2009. Fieldiana Life Earth 1:1–60Google Scholar
  99. Maharachchikumbura SSN, Guo LD, Chukeatirote E, Bahkali AH, Hyde KD (2011) Pestalotiopsis—morphology, phylogeny, biochemistry and diversity. Fungal Divers 50:167–187Google Scholar
  100. Maharachchikumbura SSN, Guo LD, Cai L, Chukeatirote E, Wu WP, Sun X, Crous PW, Bhat DJ, McKenzie EHC, Bahkali AH, Hyde KD (2012) A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Divers 56:95–129Google Scholar
  101. Manoharachary C, Agarwal DK, Rao NK (2004) A new anamorphic genus from India. Indian Phytopathol 57:161–163Google Scholar
  102. Mardis ER (2013) Next-generation sequencing platforms. Ann Rev Anal Chem (Palo Alto, Calif) 6:287–303. doi: 10.1146/annurev-anchem-062012-092628 Google Scholar
  103. McAlpine D (1896) The sooty mould of citrus trees: a study in polymorphism. Proc Linnean Soc NSW 21:469–499Google Scholar
  104. McNeill J, Turland NJ (2011) Major changes to the code of nomenclature-Melbourne. Taxon 60(5):1495–1497Google Scholar
  105. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smith GE, Wiersema JH, Turland NJ (eds) (2012) International code of nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. [Regnum Vegetabile no. 154.] Ruggell: A.R.G. Gantner Verlag. Retrieved January 18, 2013, from http://www.iapt-taxon.org/nomen/main.php
  106. Mehrotra MD (1997) Diseases of Paulownia and their management. Indian Forester 123(1):66–72Google Scholar
  107. Min XJ, Hickey DA (2007) Assessing the effect of varying sequence length on DNA barcoding of fungi. Mol Ecol Notes 7:365–373PubMedCentralPubMedGoogle Scholar
  108. Murphy DJ, Kelly D (2003) Seasonal variation in the honeydew, invertebrate, fruit and nectar resource for bellbirds in a New Zealand mountain beech forest. N Z J Ecol 27:11–23Google Scholar
  109. Mwenje E, Mguni N (2001) Cellulolytic and pecinolytic activities of Capnodium isolates (Sooty mould) from Zimbabwe. Can J Bot 9(12):1492–1495Google Scholar
  110. Nakada Y, Nakaba S, Matsunaga H, Funada R, Yoshida M (2013) Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe. Biosci Biotechnol Biochem 77(2):405–408PubMedGoogle Scholar
  111. Nel A, Prokop J, Nel P, Grandcolas P, Huang DY, Roques P, Guilbert E, Dostál O, Nel A, Zhao Y, Mädler L (2013) Environmental health and safety considerations for nanotechnology. Chem Res 46(3):605–606Google Scholar
  112. Nelson S (2008) Sooty molds. Plant Dis 52:1–6Google Scholar
  113. Ng KC (1963) A histochemical study of the role of lignification and peroxidase activity in zvound-vessel differentiation. M.S. thesis. University of IdahoGoogle Scholar
  114. Nieves-Rivera ÁM, Tattar TA, Williams EH Jr (2002) Sooty mould-planthopper association on leaves of the black mangrove Avicennia germinans (L.) stearn in southwestern Puerto Rico. Arboricultural J 26(2):141–155Google Scholar
  115. Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 296:97–101PubMedGoogle Scholar
  116. Nilsson RH, Tedersoo L, Lindahl BD, Kjøofller R, Carlsen T, Quince C, Abarenkov K, Pennanen T, Stenlid J, Bruns, Larsson KH, Kõljalg, Kauserud H (2011) Towards standardization of the description and publication of next-generation sequencing datasets of fungal communities. New Phytol 191:314–318Google Scholar
  117. Nurmiaho-Lassila E-L, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Microbiol 43:1017–1035Google Scholar
  118. Olejnik IM, Ingrouille M, Faull JL (1999) Numerical taxonomy of the sooty moulds Leptoxyphium, Caldariomyces and Aithaloderma based on micromorphology and physiology. Mycol Res 103:333–346Google Scholar
  119. Page RDM (2001) TreeView: tree drawing software for Apple Macintosh and Windows. Available at http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
  120. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A (2009) How many bootstrap replicates are necessary? LNCS 5541:184–200Google Scholar
  121. Perez JL, French JV, Summy KR, Baines AD, Little CR (2009) Fungal phyllosphere communities are altered by indirect interactions among trophic level. Microb Ecol 57(4):766–774PubMedGoogle Scholar
  122. Peršoh D (2013) Factors shaping community structure of endophytic fungi–evidence from the Pinus-Viscum-system. Fungal Divers 60:55–69Google Scholar
  123. Persoon CH (1822) Mycologia Europeae. Sectio prima. Completa Omnium Fungorum in Variis Europae Regionibus Detectorum Enumeratio. Erlangae, Impensibus I. I. Palmii, GermanyGoogle Scholar
  124. Phillips AJL, Oudemans PV, Correia A, Alves A (2006) Characterisation and epitypification of Botryosphaeria corticis, the cause of blueberry cane canker. Fungal Divers 21:141–155Google Scholar
  125. Phillips AJL, Crous PW, Alves A (2007) Diplodia seriata, the ana-morph of “Botryosphaeria” obtusa. Fungal Divers 25:141–155Google Scholar
  126. Pickard A, Kadima T, Carmichael R (1991) Chloroperoxidase−a peroxidase with potential. J Ind Microbiol 7:235–242Google Scholar
  127. Pohlad BR (1988) Rhombostilbella parasitizing Chaetothyriaceae and Capnodiaceae. Mycologia 80:757–759Google Scholar
  128. Porter TM, Golding GB (2011) Are similarity- or phylogeny-based methods more appropriate for classifying internal transcribed spacer (ITS) metagenomic amplicons? New Phytol 192:775–782PubMedGoogle Scholar
  129. Priester JH, Horst AM, Van De Werfhorst LC, Saleta JL, Mertes LA, Holden PA (2007) Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. J Microbiol Methods 68:577–587PubMedGoogle Scholar
  130. Raidl S, Bonfigli R, Agerer R (2005) Calibration of quantitative real-time TaqMan PCR by correlation with hyphal biomass and ITS copies in mycelia of Piloderma croceum. Plant Biol 7(6):713–717. doi: 10.1055/s-2005-873003 PubMedGoogle Scholar
  131. Rastogi G, Coaker GL, Leveau JHJ (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348(1):1–10. doi: 10.1111/1574-6968.12225 PubMedGoogle Scholar
  132. Ratan A, Miller W, Guillory J, Stinson J, Seshagiri S, Schuster SC (2013) Comparison of sequencing platforms for single nucleotide variant calls in a human sample. PLoS ONE 8(2):e55089. doi: 10.1371/journal.pone.0055089 PubMedCentralPubMedGoogle Scholar
  133. Reynolds DR (1971) The sooty mold ascomycetes genus Limacinula. Mycologia 63(6):1173–1209Google Scholar
  134. Reynolds DR (1998) Capnodiaceous sooty mold phylogeny. Can J Bot 76:2125–2130Google Scholar
  135. Reynolds DR (1999) Capnodium citri: the sooty mold fungi comprising the taxon concept. Mycopathologia 148:141–147PubMedGoogle Scholar
  136. Reynolds DR, Gilbert GS (2005) Epifoliar fungi from Queensland, Australia. Aust Syst Bot 18:265–289Google Scholar
  137. Rossman AY, Seifert KA (2011) Phylogenetic revision of taxonomic concepts in the Hypocreales and other Ascomycota–A tribute to Gary J. Samuels. Stud Mycol 68:4–8Google Scholar
  138. Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock–inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133PubMedCentralPubMedGoogle Scholar
  139. Santilli J Jr, Rockwell WJ, Collins RP (1985) The significance of the spores of the Basidiomycetes (mushrooms and their allies) in bronchial asthma and allergic rhinitis. Ann Allergy 5:469–471Google Scholar
  140. Santos SAP, Santos C, Silva S, Pinto G, Torres LM, Nogueira AJA (2013) The effect of sooty mold on fluorescence and gas exchange properties of olive tree. Turk J Biol 37:620–628Google Scholar
  141. Schmidt AR, Beimforde C, Seyfullah LJ, Wege SE, Dörfelt H, Girard V, Grabenhorst H, Gube M, Heinrichs J, Nel A, Nel P, Perrichot P, Reitner J, Rikkinen J (2014) Amber fossils of sooty moulds. Rev Palaeobot Palynol 200:53–64Google Scholar
  142. Schmutz J (2013) Advances In De Novo Sequencing Of Complex Eukaryotic Genomes. eds.), Plant and Animal Genome21, January 2013, San Diego, CAGoogle Scholar
  143. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the dothideomycetes using four nuclear loci. Mycologia 98:1041–1052PubMedGoogle Scholar
  144. Schoch CL, Crous PW, Groenewald JZ, Boehm EW, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EB, Kohlmeyer J, Kruys A, Li YM, Lucking R, Lumbsch HT, Marvanova L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJ, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JH, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of dothideomycetes. Stud Mycol 64:1–15PubMedCentralPubMedGoogle Scholar
  145. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas PP, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado R, Dentinger B, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera G, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EB, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovacs GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-Ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SS, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul T, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FO, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS 109(16):6241–6246PubMedCentralPubMedGoogle Scholar
  146. Scott JA, Untereiner WA, Ewaze JO, Wong B, Doyle D (2007) Baudoinia, a new genus to accommodate Torula compniacensis. Mycologia 99(4):592–601PubMedGoogle Scholar
  147. Seifert KA, Hughes SJ (2000) Spiropes dictyosporus, a new synnematous fungus associated with sooty moulds. N Z J Bot 38(3):489–492Google Scholar
  148. Seifert KA, Samson RA, deWaard JR et al (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci U S A 104:3901–3906PubMedCentralPubMedGoogle Scholar
  149. Seifert K, Morgan–Jones G, Gams W, Kendrick B (2011) The Genera of Hyphomycetes CBS–KNAW Fungal Biodiversity Centre Utrecht, The NetherlandsGoogle Scholar
  150. Selbmann L., de Hoog GS, Zucconi L., Isola D., Onofri S. (2014) Black yeasts in cold habitats. Cold-adapted Yeasts, Biodiversity, Adaptation Strategies and Biotechnological Significance. 173-189Google Scholar
  151. Serrato-Díaz LM, Rivera-Vargas LI, Goenaga R (2010) First report of sooty mold of longan (Dimocarpus longan L.) caused by Tripospermum porosporiferum Matsushima and T. variabile Matsushima in Puerto Rico. J Agric Univ P R 94(3–4):285–287Google Scholar
  152. Shenoy BD, Jeewon R, Lam WH, Bhat DJ, Than PP, Talor WJ, Hyde KD (2007) Morpho-molecular characterisation and epitypification of Colletotrichum capsici (Glomerellaceae, Sordariomycetes), the causative agent of anthracnose in chilli. Fungal Divers 27:197–211Google Scholar
  153. Silvestro D, Michalak I (2012) RaxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337Google Scholar
  154. Smith BJ, Collier KJ (2000) Interactions of adult stoneflies (Plecoptera) with riparian zones II. Diet. Aquat Insects 22:285–296Google Scholar
  155. Smith JS Jr, Tedders WL (1978) Light measurements for study of sooty mold growth on pecan foliage. Trans ASAE 23(2):481–484Google Scholar
  156. Soon WW, Hariharan M, Snyder MP (2013) High-throughput sequencing for biology and medicine. Mol Syst Biol 9:60Google Scholar
  157. Spegazzini CL (1918) Notas micológicas. Physics (Buenos Aires) 4:281–295Google Scholar
  158. Srivastava VK, Thakre RP (1996) Management of sooty mould of ‘Nagpur’ mandarin orange (Citrus reticulata Blanco) by chemical fungicides. Pestology 20(8):20–23Google Scholar
  159. Srivastava VK, Thakre RP (1997) Prevalance of sooty mould on ‘nagpur’ mandarin orange (Citrus reticulata blanco). Pestology 11(9):44–49Google Scholar
  160. Stadler M, Kuhnert E, Peršoh D, Fournier J (2013) The Xylariaceae as model example for a unified nomenclature following the “One Fungus- One Name” (1F1N) Concept. Mycol Int J Fungal Biol 4:5–21Google Scholar
  161. Stamatakis A, Ludwig T, Meier H (2005) A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463PubMedGoogle Scholar
  162. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771Google Scholar
  163. Stover RH (1975) Sooty moulds of bananas. Trans Br Mycol Soc 65:328–330Google Scholar
  164. Summy KR, Little CR (2008) Using color infrared imagery to detect sooty mold and fungal pathogens of glasshouse-propagated plants. HortSci 43(5):1485–1491Google Scholar
  165. Szwedo J, Nel A (2011) The oldest aphid insect from the Middle Triassic of the Vosges, France. Acta Palaeontol Pol 56(4):757–766Google Scholar
  166. Tellenbach C, Gruenig CR, Sieber TN (2010) Suitability of quantitative real-time pcr to estimate the biomass of fungal root endophytes. Appl Environ Microbiol 76(17):5764–5772PubMedCentralPubMedGoogle Scholar
  167. Theissen F (1916) Mykologische Abhandlungen. Verh. der Kaiserlich–Koniglichen Zoologisch–Botanischen Gesell. Wien 66:296–400Google Scholar
  168. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi: 10.1093/nar/25.24.4876 PubMedCentralPubMedGoogle Scholar
  169. Tubaki K (1957) Studies on the Japanese hyphomycetes. (III) Aquatic group. Bull Nat Sci Mus Tokyo 3:249–268Google Scholar
  170. Udayanga D, Liu X, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD (2012) A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Divers 56:157–171Google Scholar
  171. Unterseher M, Schnittler M (2009) Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.) – different cultivation techniques influence fungal biodiversity assessment. Mycol Res 113(5):645–654PubMedGoogle Scholar
  172. Van Wyk PS, Marasas WFO, Baard SW, Knox-davies PS (1985) Helicosingula, a new genus of dematiaceous hyphomycetes on Leucadendron tinctum in South Africa. Trans Br Mycol Soc 85:183–187Google Scholar
  173. Voglmayr H, Mayer V, Maschwitz U, Moog J, Djieto-Lordon C, Blatrix R (2011) The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. Fungal Biol 115(10):1077–1091PubMedGoogle Scholar
  174. von Arx JA, Müller E (1975) A re-evaluation of the bitunicate Ascomycetes with keys to families and genera. Stud Mycol 9:1–159Google Scholar
  175. Wardhaugh CW, Didham RK (2006) Preliminary evidence suggests that beech scale insect honeydew has a negative effect on terrestrial litter decomposition rates in Nothofagus forests of New Zealand. N Z J Ecol 30(2):279–284Google Scholar
  176. Webster J, Weber RWS (2007) Introduction to fungi, 3rd edn. Cambridge University Press, UKGoogle Scholar
  177. Wikee S, Udayanga D, Crous PW, Chukeatirote E, Eric HC, Bahkali AH, Dai DQ, Hyde KD (2011) Phyllosticta—an overview of current status of species recognition. Fungal Divers 51:43–61Google Scholar
  178. Wingfield MJ, de Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard L, Crous PW (2012) One fungus one name promotes progressive plant pathology. Mol Plant Pathol 6:604–613Google Scholar
  179. Winka K, Eriksson O, Bång A (1998) Molecular evidence for recognizing the Chaetothyriales. Mycologia 90(5):822–830Google Scholar
  180. Woronichin NN (1925) Über die Capnodiales. Ann Mycol 23(1–2):174–178Google Scholar
  181. Woronichin NN (1926) Zur Kenntnis der Morphologie und Systematik der Russtaupilze Transkaukasiens. Ann Mycol 24:231–264Google Scholar
  182. Yamamoto W (1956) Taxonomic studies on the Capnodiaceae. III. On the species of the Chaetothyria. Ann Phytopathol Soc Jpn 21(4):167–170Google Scholar
  183. Yang H, Chomnunti P, Ariyawansa H, Wu HX, Hyde KD (2013) The genus Phaeosaccardinula (Chaetothyriales) from Yunnan, China, introducting two new species (in press)Google Scholar
  184. Zopf W (1879) Die Konidienfrucht von Fumago. Nova Acta Academie Caesaraeae Leopoldina Carolinea German Naturae Curiosum 40:255–329Google Scholar

Copyright information

© Mushroom Research Foundation 2014

Authors and Affiliations

  • Putarak Chomnunti
    • 1
    • 2
  • Sinang Hongsanan
    • 2
  • Begoña Aguirre-Hudson
    • 3
  • Qing Tian
    • 2
  • Derek Peršoh
    • 4
  • Manpreet K. Dhami
    • 5
  • Aisyah S. Alias
    • 6
  • Jianchu Xu
    • 1
    • 9
  • Xingzhong Liu
    • 7
  • Marc Stadler
    • 8
  • Kevin D. Hyde
    • 1
    • 2
  1. 1.Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of ScienceKunmingChina
  2. 2.Institute of Excellence in Fungal Research, and School of ScienceMae Fah Luang UniversityMuangThailand
  3. 3.Jodrell LaboratoryRoyal Botanic GardensSurreyUK
  4. 4.Department of MycologyUniversity of BayreuthBayreuthGermany
  5. 5.Plant Health and Environment LaboratoryMinistry for Primary IndustriesAucklandNew Zealand
  6. 6.Institute of Ocean and Earth Sciences (IOES), C308, Institute of Postgraduate Studies BuildingUniversity of MalayaKuala LumpurMalaysia
  7. 7.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China
  8. 8.Department Microbial DrugsHelmholtz-Centre for Infection Research and Technical University of BraunschweigBraunschweigGermany
  9. 9.World Agroforestry CenterEast and Central AsiaKunmingChina

Personalised recommendations