Skip to main content
Log in

Non-systemic fungal endophytes in Festuca rubra plants infected by Epichloë festucae in subarctic habitats

Fungal Diversity Aims and scope Submit manuscript

Abstract

Epichloë festucae is an endophytic fungus that infects systemically the aerial tissues of the host grass Festuca rubra. This fungus is transmitted vertically from the mother plant to seeds. Hypothetically, the presence of E. festucae could affect the infection of a plant by other fungal species. This could occur if E. festucae metabolites produced in planta interfere negatively with other fungal infections; or alternatively, if the modulation of plant defenses by the endophyte favour further fungal infections. We have analyzed the presence of culturable non-systemic endophytes in plants of F. rubra infected (E+) and not infected (E−) by E. festucae in two subarctic habitats, meadows and riverbanks in Northern Finland. The observed non-systemic endophyte infection frequencies were similar among E+ and E− plants from riverbanks, and E+ plants from meadows. In contrast to these, the infection frequency was significantly lower in E− plants from meadows. This result suggests that the presence of E. festucae is not a main factor determining the presence of non-systemic endophytes in plants. Instead, plant genetic characteristics related to compatibility with E. festucae and other endophytes in the more stable meadow populations might play a role in these fungus–fungus–plant interactions. As a result of the survey, 18 different taxa of non-systemic endophytes were identified in plants of F. rubra. All were ascomycetes except for one basidiomycete. Three endophytic taxa could not be ascribed to a genus, but sequence data indicated that they were conspecific with other unidentified endophytes that have been isolated in cold biomes at different locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Ahlholm J, Helander ML, Elamo P, Saloniemi I, Neuvonen S, Hanhimäki S, Saikkonen K (2002a) Micro-fungi and invertebrate herbivores on birch trees: fungal mediated plant-herbivore interactions or responses to host quality? Ecol Lett 5:648–655

    Article  Google Scholar 

  • Ahlholm JU, Helander M, Henriksson J, Metzler M, Saikkonen K (2002b) Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution 56:1566–1573

    PubMed  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. PNAS USA 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Arroyo R, Martínez Zapater JM, García Criado B, Zabalgogeazcoa I (2002) The genetic structure of natural populations of the fungal endophyte E. festucae. Mol Ecol 11:355–364

    Article  Google Scholar 

  • Bacon CW, White JF (1994) Stains, media and procedures for analyzing endophytes. In: Bacon CW, White JF (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 47–56

    Google Scholar 

  • Bazely DR, Vicari M, Emmerich S, Filip L, Lin D, Inman A (1997) Interactions between herbivores and endophyte-infected Festuca rubra from the Scottish islands of St. Kilda, Benbecula and Rum. J Appl Ecol 34:847–860

    Article  Google Scholar 

  • Bonos SA, Wilson MM, Meyer WA, Funk CR (2005) Suppression of red thread in fine fescues through endophyte-mediated resistance. Appl Turf Sci. doi:10.1094/ATS-2005-0725-01-RS

    Google Scholar 

  • Brilman LA (2005) Endophytes in turfgrass cultivars. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in cool season grasses. Blackwell, Iowa, pp 341–349

    Chapter  Google Scholar 

  • Clarke BB, White JF, Hurley H, Torres MS, Sun S, Huff DR (2006) Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Dis 90:994–998

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Amer Nat 160:S99–S127

    Article  Google Scholar 

  • Fisher PJ, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120:137–143

    Article  Google Scholar 

  • Gao Q, Yang ZL (2010) Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. Mycorrhiza 20:281–287

    Article  PubMed  Google Scholar 

  • Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers 47:19–27

    Article  Google Scholar 

  • Granath G, Vicari M, Bazely DR, Ball JP, Puentes A, Rakocevic T (2007) Variation in the abundance of fungal endophytes in fescue grasses along altitudinal and grazing gradients. Ecography 30:422–430

    Google Scholar 

  • Gundel PE, Hamilton CE, Seal CE, Helander M, Martínez-Ghersa MA, Ghersa CM, Vázquez de Aldana BR, Zabalgogeazcoa I, Saikkonen K (2012) Antioxidants in Festuca rubra L. seeds affected by the fungal symbiont Epichloë festucae. Symbiosis 58:73–80

    Article  Google Scholar 

  • Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Divers 54:39–49

    Article  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Kauserud H, Lie M, Stensrud O, Ohlson M (2005) Molecular characterization of airborne fungal spores in boreal forests of contrasting human disturbance. Mycologia 97:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Article  Google Scholar 

  • Leuchtmann A, Schardl CL, Siegel MR (1994) Sexual compatibility and taxonomy of a new species of Epichloë symbiotic with fine fescue grasses. Mycologia 86:802–812

    Article  Google Scholar 

  • Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28

    Article  PubMed  Google Scholar 

  • Martín P, Bills GF, Collado J, Zabalgogeazcoa I (2008) Interacciones entre Epichloë festucae y otros hongos endófitos. XV Congreso de la Sociedad Española de Fitopatología, Lugo, Spain. p 252

  • Martinson EO, Herre EA, Machado CA, Arnold AE (2012) Culture-free survey reveals diverse and distinctive fungal communities associated with developing figs (Ficus spp.) in Panama. Microb Ecol 64:1073–1084

    Article  PubMed  Google Scholar 

  • Mouhamadou B, Molitor C, Baptist F, Sage L, Clément JC, Lavorel S, Monier A, Geremia RA (2011) Differences in fungal communities associated to Festuca paniculata in subalpine grasslands. Fungal Divers 47:55–63

    Article  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  Google Scholar 

  • Pan JJ, Baumgarten AM, May G (2008) Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maize (Zea mays). New Phytol 178:147–156

    Article  PubMed  Google Scholar 

  • Pitkäranta M, Meklin T, Hyvärinen A, Paulin L, Auvinen P, Nevalainen A, Rintala H (2008) Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Appl Environ Microbiol 74:233–244

    Article  PubMed  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Ahlholm J, Helander M, Lehtimäki S, Niemeläinen O (2000) Endophytic fungi in wild and cultivated grasses in Finland. Ecography 23:346–352

    Article  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010a) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Article  Google Scholar 

  • Saikkonen K, Wäli P, Helander M (2010b) Genetic compatibility determines endophyte-grass combinations. PLoS One 5(6):e11395. doi:10.1371/journal.pone.0011395

    Article  PubMed  Google Scholar 

  • Sampson K (1933) The systemic infection of grasses by Epichloë typhina (Pers.) Tul. Trans Brit Mycol Soc 18:30–47

    Article  Google Scholar 

  • Sánchez S, Bills GF, Zabalgogeazcoa I (2007) The endophytic mycobiota of Dactylis glomerata. Fungal Divers 27:171–195

    Google Scholar 

  • Sánchez S, Bills GF, Zabalgogeazcoa I (2008) Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers 33:87–100

    Google Scholar 

  • Sánchez S, Bills GF, Domínguez Acuña L, Zabalgogeazcoa I (2010) Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 41:115–123

    Article  Google Scholar 

  • Sánchez S, Bills GF, Herrero N, Zabalgogeazcoa I (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5:289–297

    Article  Google Scholar 

  • Schulthess FM, Faeth SH (1998) Distribution, abundances, and associations of the endohytic fungal community of Arizona fescue (Festuca arizonica). Mycologia 90:569–578

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Stone JK, Polishook JD, White JF Jr (2004) Endophytic fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi. Inventory and monitoring methods. Elsevier Academic Press, USA, pp 241–270

    Chapter  Google Scholar 

  • Tadych M, Bergen M, Dugan F, White JF (2007) Evaluation of the potential role of water in spread of conidia of the Neotyphodium endophyte of Poa ampla. Mycol Res 111:466–472

    Article  PubMed  Google Scholar 

  • Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47:97–107

    Article  Google Scholar 

  • Vázquez de Aldana BR, Zabalgogeazcoa I, García Ciudad A, García Criado B (2013) An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant Soil 362:201–213

    Article  Google Scholar 

  • Vesterlund SR, Helander M, Faeth SH, Hyvönen T, Saikkonen K (2011) Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Divers 47:109–118

    Article  Google Scholar 

  • Wäli PR, Helander M, Nissinen O, Saikkonen K (2006) Susceptibility of endophyte-infected grasses to winter pathogens (snow molds). Can J Bot 84:1043–1051

    Article  Google Scholar 

  • Wäli PR, Ahlholm J, Helander M, Saikkonen K (2007) Occurrence and genetic structure of the systemic grass endophyte E. festucae in fine fescue populations. Microb Ecol 53:20–29

    Article  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS USA 102:13386–13391

    Article  PubMed  CAS  Google Scholar 

  • White JF Jr, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    Article  PubMed  CAS  Google Scholar 

  • White J, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • White JF, Lewis G, Sun S, Funk CR (1993) A study of distribution of Acremonium typhinum in populations of red fescue in southwest England and in vitro growth comparisons to isolates from North American collections. Sydowia 45:388–394

    Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant-Microb Interact 13:1027–1033

    Article  CAS  Google Scholar 

  • Yue Q, Miller CJ, White JF, Richardson MD (2000) Isolation and characterization of fungal inhibitors from Epichloe festucae. J Agric Food Chem 48:4687–4692

    Article  PubMed  CAS  Google Scholar 

  • Zabalgogeazcoa I (2008) Fungal endophytes and their interactions with plant pathogens. Spanish J Agric Res 6:138–146

    Google Scholar 

  • Zabalgogeazcoa I, Vazquez de Aldana BR (2007) Potencial del hongo endofítico Epichloë festucae para la mejora del césped. Innov Tecnol Agroaliment 2:145–157

    Google Scholar 

  • Zabalgogeazcoa I, Vazquez de Aldana BR, Garcia Criado B, Garcia Ciudad A (1999) The infection of Festuca rubra by the fungal endophyte Epichloë festucae in Mediterranean permanent grasslands. Grass For Sci 54:91–95

    Article  Google Scholar 

  • Zabalgogeazcoa I, Romo M, Keck E, Vázquez de Aldana BR, García Ciudad A, García Criado B (2006) The infection of Festuca rubra subsp. pruinosa by Epichloë festucae. Grass For Sci 61:71–76

    Article  Google Scholar 

  • Zhang N, Zhang S, Borchert S, Richardson K, Schmid J (2011) High levels of a fungal superoxide dismutase and increased concentration of a PR-10 plant protein in associations between the endophytic fungus Neotyphodium lolii and ryegrass. MPMI 24:984–992

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from INTERACT (grant agreement No. 262693) under the European Community’s Seventh Framework Programme, from Academy of Finland (Project No. 137909), and Spanish Government (Project AGL2011-22783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iñigo Zabalgogeazcoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabalgogeazcoa, I., Gundel, P.E., Helander, M. et al. Non-systemic fungal endophytes in Festuca rubra plants infected by Epichloë festucae in subarctic habitats. Fungal Diversity 60, 25–32 (2013). https://doi.org/10.1007/s13225-013-0233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-013-0233-x

Keywords

Navigation