Climate change effects fruiting of the prize matsutake mushroom in China

Abstract

Climate change affects various facets of life but there is little data on its effects on wild mushroom fruiting. Yunnan Province in China is a rich source of wild mushrooms and has experienced a temperature rise over recent decades. This has resulted in warmer temperatures but the impacts of these changes on mushroom production lack documentation. We collected data on the fruiting of the highly prized matsutake mushroom (Tricholoma matsutake) in West Yunnan, China over an 11 year period from 2000 to 2010. Fruiting phenology and productivity were compared against the driving meteorological variables using Projection to Latent Structure regression. The mushrooms appeared later in the season during the observation period, which is most likely explained by rising temperatures and reduced rain during May and June. High temperature and abundant rain in August resulted in good productivity. The climate response of matsutake production results from a sequence of processes that are possibly linked with regulatory signals and resource availability. To advance the knowledge of this complex system, a holistic research approach integrating biology, ecology, genetics, physiology, and phytochemistry is needed. Our results contribute to a general model of fungal ecology, which can be used to predict the responses of fungi to global climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Baptista P, Martins A, Tavares RM, Lino-Neto T (2010) Diversity and fruiting pattern of macrofungi associated with chestnut (Castanea sativa) in the Tra’s-os-Montes region (Northeast Portugal). Fungal Ecol 3(1):9–19

    Article  Google Scholar 

  2. Büntgen U, Kauserud H, Egli S (2011) Linking climate variability to mushroom productivity and phenology. Front Ecol Environ. doi:10.1890/110064

  3. Busch S, Braus GH (2007) How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol 64(4):873–876. doi:10.1111/j.1365-2958.2007.05711.x

    PubMed  Article  CAS  Google Scholar 

  4. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328(5982):1164–1168. doi:10.1126/science.1187512

    PubMed  Article  CAS  Google Scholar 

  5. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026. doi:10.1126/science.1206432

    PubMed  Article  CAS  Google Scholar 

  6. Egli S (2011) Mycorrhizal mushroom diversity and productivity—an indicator of forest health? Ann For Sci 68(1):81–88. doi:10.1007/s13595-010-0009-3

    Article  Google Scholar 

  7. Fan DM, Yang YP (2009) Altitudinal variations in flower and bulbil production of an alpine perennial, Polygonum viviparum L. (Polygonaceae). Plant Biol 11(3):493–497. doi:10.1111/j.1438-8677.2008.00188.x

    PubMed  Article  Google Scholar 

  8. Gange AC, Gange EG, Sparks TH, Boddy L (2007) Rapid and recent changes in fungal fruiting patterns. Science 316:71

    PubMed  Article  CAS  Google Scholar 

  9. Gong M-q Su, L-j CY, F-z W, J-x C (2002) A study on development of Shiro and productive potentialities of Tricholoma matsutake (in Chinese). For Res 15(4):374–379

    Google Scholar 

  10. Halme P, Kotiaho J (2012) The importance of timing and number of surveys in fungal biodiversity research. Biodivers Conserv 21(1):205–219. doi:10.1007/s10531-011-0176-z

    Article  Google Scholar 

  11. Hof C, Levinsky I, AraÚJo MB, Rahbek C (2011) Rethinking species’ ability to cope with rapid climate change. Global Change Biol 17(9):2987–2990. doi:10.1111/j.1365-2486.2011.02418.x

    Article  Google Scholar 

  12. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA

  13. Kauserud H, Stige LC, Vik JO, Økland RH, Høiland K, Stenseth NC (2008) Mushroom fruiting and climate change. Proc Natl Acad Sci 105(10):3811–3814. doi:10.1073/pnas.0709037105

    PubMed  Article  CAS  Google Scholar 

  14. Kauserud H, Heegaard E, Semenov MA, Boddy L, Halvorsen R, Stige LC, Sparks TH, Gange AC, Stenseth NC (2010) Climate change and spring-fruiting fungi. Proceedings of the Royal Society 277:1169–1177. doi:10.1098/rspb.2009.1537

    Article  Google Scholar 

  15. Krebs CJ, Carrier P, Boutin S, Boonstra R, Hofer E (2008) Mushroom crops in relation to weather in the southwestern Yukon. Botany 86(12):1497–1502. doi:10.1139/b08-094

    Article  Google Scholar 

  16. Krivtsov V, Watlingb R, Walkera SJJ, Knottb D, Palfreymana JW, Staines HJ (2003) Analysis of fungal fruiting patterns at the Dawyck Botanic Garden. Ecol Model 170:393–406

    Article  Google Scholar 

  17. Ma X, Xu J, Luo Y, Aggarwal SP, Li J (2009) Response of hydrological processes to land-cover and climate changes in Kejie watershed, south-west China. Hydrological Processes 23:1179–1191

    Article  Google Scholar 

  18. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Og B, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Vliet AJHV, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Global Change Biol 12(10):1969–1976

    Article  Google Scholar 

  19. Mihail JD, Bruhn JN, Bonello P (2007) Spatial and temporal patterns of morel fruiting. Mycol Res 111(3):339–346

    Google Scholar 

  20. Myers N, Mittermeier RA, Mittermeier CG, Faseca GABd, Kent J (2002) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  21. Newbound M, McCarthy M, Lebel T (2010) Phenology of epigeous macrofungi found in red gum woodlands. Fungal Biol 114(2–3):171–178. doi:10.1016/j.funbio.2009.12.001

    PubMed  Article  Google Scholar 

  22. Ogawa M (1975) Microbial ecology of mycorrhizal fungus, Tricholoma matsutake Ito et Imai (Sing.) in pine forest II, Mycorrhiza formed by Tricholoma matsutake. vol 272. The government forest experiment station, Tokyo, Japan

  23. Ogawa M (1976) Microbial ecology of mycorrhizal fungus-Tricholoma matsutake Ito et Imai (Sing.) in pine forest III, fungal flora in Shiro soil and on the mycorrhiza. The government forest experiment station, Tokyo, Japan

  24. Ogawa M (1977) Microbial ecology of mycorrhizal fungus, Tricholoma matsutake Ito et Imai (Sing.) in pine forest IV, The shiro of Tricholoma matsutake in the fugal community. vol 279. The government forest experiment station, Tokyo, Japan

  25. Pearman PB, Guisan A, Zimmermann NE (2011) Impacts of climate change on Swiss biodiversity: an indicator taxa approach. Biol Conserv 144(2):866–875. doi:10.1016/j.biocon.2010.11.020

    Article  Google Scholar 

  26. Peter M (2006) Ectomycorrhizal fungi – fairy rings and the wood-wide web. New Phytol 171:685–687

    PubMed  Article  Google Scholar 

  27. Pickles BJ, Egger KN, Massicotte HB, Green DS (2012) Ectomycorrhizas and climate change. Fungal Ecol 5(1):73–84. doi:10.1016/j.funeco.2011.08.009

    Article  Google Scholar 

  28. Pinna S, Gévry MF, Côté M, Sirois L (2010) Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. For Ecol Manage 260(3):294–301. doi:10.1016/j.foreco.2010.04.024

    Article  Google Scholar 

  29. Primack RB, Miller-Rushing AJ (2011) Broadening the study of phenology and climate change. New Phytol 191(2):307–309. doi:10.1111/j.1469-8137.2011.03773.x

    PubMed  Article  Google Scholar 

  30. Salerni E, Perini C (2004) Experimental study for increasing productivity of Boletus edulis s.l. in Italy. For Ecol Manage 201:161–170

    Article  Google Scholar 

  31. Samils N, Olivera A, Danell E, Alexander S, Fischer C, Colinas C (2008) The socioeconomic impact of truffle cultivation in Rural Spain. Econ Bot 62(3):331–340. doi:10.1007/s12231-008-9030-y

    Article  Google Scholar 

  32. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol 12:343–351

    Article  Google Scholar 

  33. Sitta N, Floriani M (2008) Nationalization and globalization trends in the wild mushroom commerce of Italy with emphasis on Porcini (Boletus edulis and Allied Species). Econ Bot 62(3):307–322. doi:10.1007/s12231-008-9037-4

    Article  Google Scholar 

  34. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427 (6970):145–148. doi:http://www.nature.com/nature/journal/v427/n6970/suppinfo/nature02121_S1.html

    Google Scholar 

  35. Ugalde U (2006) Autoregulatory signals in mycelial fungi growth, differentiation and sexuality. In: Kües U, Fischer R (eds) vol 1. The Mycota. Springer, Berlin, pp 203–213. doi:10.1007/3-540-28135-5_11

    Google Scholar 

  36. Wang X-H, Liu P-G (2002) Resources investigation and studies on the wild commercial fungi in Yunnan (in Chinese). Biodivers Sci 10(3):318–325

    Google Scholar 

  37. Wang Y, Hall IR, Evans LA (1997) Ectomycorrhizal fungi with edible fruiting bodies.1. Tricholoma matsutake and related fungi. Econ Bot 51(3):311–327

    Article  Google Scholar 

  38. Weckerle C, Yang Y, Huber F, Li Q (2010) People, money, and protected areas: the collection of the caterpillar mushroom Ophiocordyceps sinensis in the Baima Xueshan Nature Reserve, Southwest China. Biodivers Conserv 19(9):2685–2698. doi:10.1007/s10531-010-9867-0

    Article  Google Scholar 

  39. Wold S (1995) PLS for multivariate linear modeling. In: Waterbeemd VD (ed) Chemometric methods in molecular design: methods and principles in medicinal chemistry, vol 2. Verlag-Chemie, Weinheim, pp 195–218

    Google Scholar 

  40. Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometrics Intellig Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  41. Yamada A, Maeda K, Kobayashi H, Murata H (2006) Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro’. Mycorrhiza 16:111–116. doi:10.1007/s00572-005-0021-x

    PubMed  Article  Google Scholar 

  42. Yang Z (2010) Inventory of higher fungi in the Hengduan Mountains of southwestern China (in Chinese). Chinese Bulletin of Life Sciences 22(11):1086–1091

    Google Scholar 

  43. Yang X, He J, Li C, Ma J, Yang Y, Xu J (2008) Matsutake trade in Yunnan Province, China: an overview. Econ Bot 62(3):269–277

    Article  Google Scholar 

  44. Yang X, Wilkes A, Yang Y, Xu J, Geslani CS, Yang X, Gao F, Yang J, Robinson B (2009) Common and privatized: conditions for wise management of matsutake mushrooms in Northwest Yunnan province, China. Ecol Soc 14(2):30. doi:http://www.ecologyandsociety.org/vol14/iss2/art30/

    Google Scholar 

  45. Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. PNAS 107:22151–22156

    PubMed  Article  CAS  Google Scholar 

  46. Zhang Y, Zhou D, Zhao Q, Zhou T, Hyde K (2010) Diversity and ecological distribution of macrofungi in the Laojun Mountain region, southwestern China. Biodivers Conserv 19(12):3545–3563. doi:10.1007/s10531-010-9915-9

    Article  Google Scholar 

Download references

Acknowledgements

This study was sponsored jointly by the National Natural Science Foundation of China (Grant No. 30800158), the 11th Five-Year China Key Science & Technology Project on Silviculture for Carbon Sequestration in Subtropics (Grant No: 2008BAD95B09) and the Ford Foundation (Grant No. 10850639). We are grateful to David Pilz and Edward Grumbine for critical comments and Greta M. Pennington Rana for English editing. We also thank the Global Research Network for Fungal Biology, the National Research Council of Thailand (grant NRCT/55201020007), Mae Fah Luang University (grant MFU/54 1 01 02 00 48) and King Saud University for support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongping Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, X., Luedeling, E., Chen, G. et al. Climate change effects fruiting of the prize matsutake mushroom in China. Fungal Diversity 56, 189–198 (2012). https://doi.org/10.1007/s13225-012-0163-z

Download citation

Keywords

  • Fruiting
  • Phenology
  • Productivity
  • Response
  • Projection to Latent Structures regression
  • Tricholoma matsutake
  • Yunnan