Fungal Diversity

, Volume 56, Issue 1, pp 189–198 | Cite as

Climate change effects fruiting of the prize matsutake mushroom in China

  • Xuefei Yang
  • Eike Luedeling
  • Guangli Chen
  • Kevin D. Hyde
  • Youji Yang
  • Dequn Zhou
  • Jianchu Xu
  • Yongping Yang


Climate change affects various facets of life but there is little data on its effects on wild mushroom fruiting. Yunnan Province in China is a rich source of wild mushrooms and has experienced a temperature rise over recent decades. This has resulted in warmer temperatures but the impacts of these changes on mushroom production lack documentation. We collected data on the fruiting of the highly prized matsutake mushroom (Tricholoma matsutake) in West Yunnan, China over an 11 year period from 2000 to 2010. Fruiting phenology and productivity were compared against the driving meteorological variables using Projection to Latent Structure regression. The mushrooms appeared later in the season during the observation period, which is most likely explained by rising temperatures and reduced rain during May and June. High temperature and abundant rain in August resulted in good productivity. The climate response of matsutake production results from a sequence of processes that are possibly linked with regulatory signals and resource availability. To advance the knowledge of this complex system, a holistic research approach integrating biology, ecology, genetics, physiology, and phytochemistry is needed. Our results contribute to a general model of fungal ecology, which can be used to predict the responses of fungi to global climate change.


Fruiting Phenology Productivity Response Projection to Latent Structures regression Tricholoma matsutake Yunnan 


  1. Baptista P, Martins A, Tavares RM, Lino-Neto T (2010) Diversity and fruiting pattern of macrofungi associated with chestnut (Castanea sativa) in the Tra’s-os-Montes region (Northeast Portugal). Fungal Ecol 3(1):9–19CrossRefGoogle Scholar
  2. Büntgen U, Kauserud H, Egli S (2011) Linking climate variability to mushroom productivity and phenology. Front Ecol Environ. doi:10.1890/110064
  3. Busch S, Braus GH (2007) How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol 64(4):873–876. doi:10.1111/j.1365-2958.2007.05711.x PubMedCrossRefGoogle Scholar
  4. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328(5982):1164–1168. doi:10.1126/science.1187512 PubMedCrossRefGoogle Scholar
  5. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026. doi:10.1126/science.1206432 PubMedCrossRefGoogle Scholar
  6. Egli S (2011) Mycorrhizal mushroom diversity and productivity—an indicator of forest health? Ann For Sci 68(1):81–88. doi:10.1007/s13595-010-0009-3 CrossRefGoogle Scholar
  7. Fan DM, Yang YP (2009) Altitudinal variations in flower and bulbil production of an alpine perennial, Polygonum viviparum L. (Polygonaceae). Plant Biol 11(3):493–497. doi:10.1111/j.1438-8677.2008.00188.x PubMedCrossRefGoogle Scholar
  8. Gange AC, Gange EG, Sparks TH, Boddy L (2007) Rapid and recent changes in fungal fruiting patterns. Science 316:71PubMedCrossRefGoogle Scholar
  9. Gong M-q Su, L-j CY, F-z W, J-x C (2002) A study on development of Shiro and productive potentialities of Tricholoma matsutake (in Chinese). For Res 15(4):374–379Google Scholar
  10. Halme P, Kotiaho J (2012) The importance of timing and number of surveys in fungal biodiversity research. Biodivers Conserv 21(1):205–219. doi:10.1007/s10531-011-0176-z CrossRefGoogle Scholar
  11. Hof C, Levinsky I, AraÚJo MB, Rahbek C (2011) Rethinking species’ ability to cope with rapid climate change. Global Change Biol 17(9):2987–2990. doi:10.1111/j.1365-2486.2011.02418.x CrossRefGoogle Scholar
  12. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  13. Kauserud H, Stige LC, Vik JO, Økland RH, Høiland K, Stenseth NC (2008) Mushroom fruiting and climate change. Proc Natl Acad Sci 105(10):3811–3814. doi:10.1073/pnas.0709037105 PubMedCrossRefGoogle Scholar
  14. Kauserud H, Heegaard E, Semenov MA, Boddy L, Halvorsen R, Stige LC, Sparks TH, Gange AC, Stenseth NC (2010) Climate change and spring-fruiting fungi. Proceedings of the Royal Society 277:1169–1177. doi:10.1098/rspb.2009.1537 CrossRefGoogle Scholar
  15. Krebs CJ, Carrier P, Boutin S, Boonstra R, Hofer E (2008) Mushroom crops in relation to weather in the southwestern Yukon. Botany 86(12):1497–1502. doi:10.1139/b08-094 CrossRefGoogle Scholar
  16. Krivtsov V, Watlingb R, Walkera SJJ, Knottb D, Palfreymana JW, Staines HJ (2003) Analysis of fungal fruiting patterns at the Dawyck Botanic Garden. Ecol Model 170:393–406CrossRefGoogle Scholar
  17. Ma X, Xu J, Luo Y, Aggarwal SP, Li J (2009) Response of hydrological processes to land-cover and climate changes in Kejie watershed, south-west China. Hydrological Processes 23:1179–1191CrossRefGoogle Scholar
  18. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Og B, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Vliet AJHV, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Global Change Biol 12(10):1969–1976CrossRefGoogle Scholar
  19. Mihail JD, Bruhn JN, Bonello P (2007) Spatial and temporal patterns of morel fruiting. Mycol Res 111(3):339–346Google Scholar
  20. Myers N, Mittermeier RA, Mittermeier CG, Faseca GABd, Kent J (2002) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  21. Newbound M, McCarthy M, Lebel T (2010) Phenology of epigeous macrofungi found in red gum woodlands. Fungal Biol 114(2–3):171–178. doi:10.1016/j.funbio.2009.12.001 PubMedCrossRefGoogle Scholar
  22. Ogawa M (1975) Microbial ecology of mycorrhizal fungus, Tricholoma matsutake Ito et Imai (Sing.) in pine forest II, Mycorrhiza formed by Tricholoma matsutake. vol 272. The government forest experiment station, Tokyo, JapanGoogle Scholar
  23. Ogawa M (1976) Microbial ecology of mycorrhizal fungus-Tricholoma matsutake Ito et Imai (Sing.) in pine forest III, fungal flora in Shiro soil and on the mycorrhiza. The government forest experiment station, Tokyo, JapanGoogle Scholar
  24. Ogawa M (1977) Microbial ecology of mycorrhizal fungus, Tricholoma matsutake Ito et Imai (Sing.) in pine forest IV, The shiro of Tricholoma matsutake in the fugal community. vol 279. The government forest experiment station, Tokyo, JapanGoogle Scholar
  25. Pearman PB, Guisan A, Zimmermann NE (2011) Impacts of climate change on Swiss biodiversity: an indicator taxa approach. Biol Conserv 144(2):866–875. doi:10.1016/j.biocon.2010.11.020 CrossRefGoogle Scholar
  26. Peter M (2006) Ectomycorrhizal fungi – fairy rings and the wood-wide web. New Phytol 171:685–687PubMedCrossRefGoogle Scholar
  27. Pickles BJ, Egger KN, Massicotte HB, Green DS (2012) Ectomycorrhizas and climate change. Fungal Ecol 5(1):73–84. doi:10.1016/j.funeco.2011.08.009 CrossRefGoogle Scholar
  28. Pinna S, Gévry MF, Côté M, Sirois L (2010) Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. For Ecol Manage 260(3):294–301. doi:10.1016/j.foreco.2010.04.024 CrossRefGoogle Scholar
  29. Primack RB, Miller-Rushing AJ (2011) Broadening the study of phenology and climate change. New Phytol 191(2):307–309. doi:10.1111/j.1469-8137.2011.03773.x PubMedCrossRefGoogle Scholar
  30. Salerni E, Perini C (2004) Experimental study for increasing productivity of Boletus edulis s.l. in Italy. For Ecol Manage 201:161–170CrossRefGoogle Scholar
  31. Samils N, Olivera A, Danell E, Alexander S, Fischer C, Colinas C (2008) The socioeconomic impact of truffle cultivation in Rural Spain. Econ Bot 62(3):331–340. doi:10.1007/s12231-008-9030-y CrossRefGoogle Scholar
  32. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol 12:343–351CrossRefGoogle Scholar
  33. Sitta N, Floriani M (2008) Nationalization and globalization trends in the wild mushroom commerce of Italy with emphasis on Porcini (Boletus edulis and Allied Species). Econ Bot 62(3):307–322. doi:10.1007/s12231-008-9037-4 CrossRefGoogle Scholar
  34. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427 (6970):145–148. doi: Google Scholar
  35. Ugalde U (2006) Autoregulatory signals in mycelial fungi growth, differentiation and sexuality. In: Kües U, Fischer R (eds) vol 1. The Mycota. Springer, Berlin, pp 203–213. doi:10.1007/3-540-28135-5_11 Google Scholar
  36. Wang X-H, Liu P-G (2002) Resources investigation and studies on the wild commercial fungi in Yunnan (in Chinese). Biodivers Sci 10(3):318–325Google Scholar
  37. Wang Y, Hall IR, Evans LA (1997) Ectomycorrhizal fungi with edible fruiting bodies.1. Tricholoma matsutake and related fungi. Econ Bot 51(3):311–327CrossRefGoogle Scholar
  38. Weckerle C, Yang Y, Huber F, Li Q (2010) People, money, and protected areas: the collection of the caterpillar mushroom Ophiocordyceps sinensis in the Baima Xueshan Nature Reserve, Southwest China. Biodivers Conserv 19(9):2685–2698. doi:10.1007/s10531-010-9867-0 CrossRefGoogle Scholar
  39. Wold S (1995) PLS for multivariate linear modeling. In: Waterbeemd VD (ed) Chemometric methods in molecular design: methods and principles in medicinal chemistry, vol 2. Verlag-Chemie, Weinheim, pp 195–218Google Scholar
  40. Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometrics Intellig Lab Syst 58:109–130CrossRefGoogle Scholar
  41. Yamada A, Maeda K, Kobayashi H, Murata H (2006) Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro’. Mycorrhiza 16:111–116. doi:10.1007/s00572-005-0021-x PubMedCrossRefGoogle Scholar
  42. Yang Z (2010) Inventory of higher fungi in the Hengduan Mountains of southwestern China (in Chinese). Chinese Bulletin of Life Sciences 22(11):1086–1091Google Scholar
  43. Yang X, He J, Li C, Ma J, Yang Y, Xu J (2008) Matsutake trade in Yunnan Province, China: an overview. Econ Bot 62(3):269–277CrossRefGoogle Scholar
  44. Yang X, Wilkes A, Yang Y, Xu J, Geslani CS, Yang X, Gao F, Yang J, Robinson B (2009) Common and privatized: conditions for wise management of matsutake mushrooms in Northwest Yunnan province, China. Ecol Soc 14(2):30. doi: Google Scholar
  45. Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. PNAS 107:22151–22156PubMedCrossRefGoogle Scholar
  46. Zhang Y, Zhou D, Zhao Q, Zhou T, Hyde K (2010) Diversity and ecological distribution of macrofungi in the Laojun Mountain region, southwestern China. Biodivers Conserv 19(12):3545–3563. doi:10.1007/s10531-010-9915-9 CrossRefGoogle Scholar

Copyright information

© The Mushroom Research Foundation 2012

Authors and Affiliations

  • Xuefei Yang
    • 1
    • 2
  • Eike Luedeling
    • 3
  • Guangli Chen
    • 4
  • Kevin D. Hyde
    • 5
    • 6
  • Youji Yang
    • 7
  • Dequn Zhou
    • 4
  • Jianchu Xu
    • 2
    • 8
  • Yongping Yang
    • 1
    • 2
  1. 1.Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of SciencesKunmingPeople’s Republic of China
  2. 2.Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunmingPeople’s Republic of China
  3. 3.World Agroforestry CentreNairobiKenya
  4. 4.Kunming University of Science and TechnologyKunmingPeople’s Republic of China
  5. 5.Institute of Excellence in Fungal Research, School of ScienceMae Fah Luang UniversityChiang RaiThailand
  6. 6.College of Science, Botany and Microbiology DepartmentKing Saud UniversityRiyadhSaudi Arabia
  7. 7.Baoshan PrefectureChina
  8. 8.Centre for Mountain Ecosystem Studies, World Agroforestry CentreKunmingPeople’s Republic of China

Personalised recommendations