Skip to main content
Log in

The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

The genus Phomopsis (teleomorph Diaporthe) comprises phytopathologically important microfungi with diverse host associations and a worldwide distribution. Species concepts in Phomopsis have been based historically on morphology, cultural characteristics and host affiliation. This paper serves to provide an overview of the current status of the taxonomy in Phomopsis with special reference to biology, applications of various species, species concepts, future research perspectives and names of common pathogens, the latter being given taxonomic reappraisal. Accurate species identification is critical to understanding disease epidemiology and in developing effective control measures for plant diseases. Difficulties in accurate species identification using morphology have led to the application of alternative approaches to differentiate species, including virulence and pathogenicity, biochemistry, metabolites, physiology, antagonism, molecular phylogenetics and mating experiments. Redefinition of Phomopsis/Diaporthe species has been ongoing, and some species have been redefined based on a combination of molecular, morphological, cultural, phytopathological and mating type data. Rapid progress in molecular identification has in particular revolutionized taxonomic studies, providing persuasive genetic evidence to define the species boundaries. A backbone ITS based phylogenetic tree is here in generated using the sequences derived from 46 type, epitype cultures, and vouchers and is presented as a rough and quick identification guide for species of Phomopsis. The need for epitypification of taxonomic entities and the need to use multiple loci in phylogenies that better reflect species limits are suggested. The account of names of phytopathogens currently in use are listed alphabetically and annotated with a taxonomic entry, teleomorph, associated hosts and disease symptoms, including brief summaries of taxonomic and phylogenetic research. Available type culture information and details of gene sequences derived from type cultures are also summarized and tabulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abang MM, Abraham WR, Asiedu R, Hoffmann P, Wolf G, Winter S (2009) Secondary metabolite profile and phytotoxic activity of genetically distinct forms of Colletotrichum gloeosporioides from yam (Dioscorea spp.). Mycol Res 113:130–140

    Article  PubMed  CAS  Google Scholar 

  • Abd-Elsalam KA, Yassin MA, Moslem MA, Bahkali AH, de Wit PJGM, McKenzie EHC, Stephenson S, Cai L, Hyde KD (2010) Culture collections are becoming the herbaria for fungal pathogens. Fungal Divers 45:21–32. doi:10.1007/s13225-010-0063-z

    Article  Google Scholar 

  • Alfieri JR, Langdon KR, Wehlburg C, Kimbrough JW (1984) Index of plant diseases in Florida (Revised). Fla Dept Agric and Consumer Serv Div Plant Ind Bull 11:1–389

    Google Scholar 

  • Aly AN, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16. doi:10.1007/s13225-010-0034-4

    Article  Google Scholar 

  • An ZQ, Wang W, Liu XZ, Bennett JW (2010) China’s fungal genomics initiative: a whitepaper. Mycology 1:1–8

    Article  CAS  Google Scholar 

  • Anco DJ, Kim S, Mitchell TK, Madden LV, Ellis MA (2009) Transformation of Phomopsis viticola with the green fluorescent protein. Mycologia 101:8538–8558. doi:10.3852/09-007

    Article  Google Scholar 

  • Anderson RG, Hartman JR (1983) Phomopsis twig blight on weeping figs indoors: a case study. Foliage Digest 6:38–58

    Google Scholar 

  • Anonymous (1960) Index of plant diseases in the United States. USDA Agric Handb 165:1–531

    Google Scholar 

  • Ash GJ (2010) The science, art and business of successful bioherbicides. Biol Control 52:230–240

    Article  Google Scholar 

  • Ash GJ, Stodart B, Sakuanrungsirikul S, Anschaw E, Crump N, Hailstones D, Harper JDI (2010) Genetic characterization of a novel Phomopsis sp., a putative biocontrol agent for Carthamus lanatus. Mycologia 102:54–61

    Article  PubMed  CAS  Google Scholar 

  • Auld BA, Morin L (1995) Constraints in the development of bioherbicides. Weed Technol 3:638–652

    Google Scholar 

  • Aveskamp MM, Gruyter JD, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related genera. Stud Mycol 65:1–60

    Article  PubMed  CAS  Google Scholar 

  • Bailey KL, Boyetchko SM, Langle T (2010) Social and economic drivers shaping biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:222–229

    Article  Google Scholar 

  • Barreto RW, Evans HC, Ellison CA (1995) The mycobiota of the weed Lantana camara in Brazil, with particular reference to biological control. Mycol Res 99:769–782

    Article  Google Scholar 

  • Bausa Alcalde M (1952) Algunos micromi-cetos recolectados por el Prof. Caballero Segares en Valencia. Anales Inst Bot Cavanilles 10:229–255

    Google Scholar 

  • Bega RV (1978) Phomopsis lokoyae outbreak in a California forest nursery. Plant Dis Report 62:567–569

    Google Scholar 

  • Benschop K, Tewari JP, Toop EW (1984) Phomopsis twig die-back of some woody interior ornamentals in Alberta. Can Plant Dis Surv 64:29–31

    Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. J Exp Bot 58:4019–4026. doi:10.1093/jxb/erm298

    Article  PubMed  CAS  Google Scholar 

  • Bettucci L, Alonso RM (1997) A comparative study of fungal populations in healthy and symptomatic twigs of Eucalyptus grandis in Uruguay. Mycol Res 101:1061–1064

    Article  Google Scholar 

  • Bills GF, Giacobbe RA, Lee SH, Peláez F, Tkacz JS (1992) Tremorgenic mycotoxins, paspalitrem A and C, from a tropical Phomopsis. Mycol Res 96:977–983

    Article  CAS  Google Scholar 

  • Birren B, Fink G, Lander ES (2002) Fungal genome initiative, white paper developed by the fungal research community. Whitehead Institute/MIT Center for Genome Research, Cambridge, MA 02141, USA. http://www.broad.mit.edu/annotation/fungi/fgi/history.html

  • Bobev S (2009) Reference guide for the diseases of cultivated plants. Unknown journal or publisher

  • Boddy L, Griffith GS (1989) Role of endophytes and latent invasion in the development of decay communities in sapwood of angiospermous trees. Sydowia 41:41–73

    Google Scholar 

  • Botella L, Diez JJ (2011) Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers 47:9–18. doi:10.1007/s13225-010-0061-1

    Article  Google Scholar 

  • Brayford D (1990) Variation in Phomopsis isolates from Ulmus species in the British Isles and Italy. Mycol Res 94:691–697

    Article  Google Scholar 

  • Brooks F (2004) List of plant diseases in American Samoa. Land Grant Technical Report: 41. American Samoa Community College Land Grant Program http://www.ctahr.hawaii.edu/adap/ASCC_LandGrant/Dr_Brooks/TechRepNo41.pdf

  • Bunyapaiboonsri T, Yoiprommarat S, Srikitikulchai P, Srichomthong K, Lumong S (2010) Oblongolides from the endophytic fungus Phomopsis sp. BCC 9789. J Nat Prod 73:55–59

    Google Scholar 

  • Bussaban B, Lumyong L, Lumyong P, McKenzie EHC, Hyde KD (2001) Endophytic fungi from Amomum siamense. Can J Microbiol 47:943–948

    PubMed  CAS  Google Scholar 

  • Butler G (2010) Fungal sex and pathogenesis. Clin Microbiol Rev 23:140–159

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Hyde KD, Taylor PWJ, Weir B, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204

    Google Scholar 

  • Cai L, Udayanga D, Manamgoda DS, Maharachhikumbura SSN, Liu XZ, Hyde KD (2011) A case of reinvent tropical plant pathogens. Trop plant pathol. Submitted

  • Cannon PF, Bridge PD, Monte E (2000) Linking the past, present, and future of Colletotrichum systematics. In: Prusky D, Freeman S, Dickman MB (eds) Colletotrichum: host specificity, pathology, and host pathogen interaction. APS, St. Paul, pp 1–20

    Google Scholar 

  • Carriere JB, Petrov M (1990) Diaporthe (Phomopsis) sp., a new pathogen of cocklebur (Xanthium italicum Moretti) and of sunflower (Helianthus annuus L.). Helia 13:93–106

    Google Scholar 

  • Castlebury LA, Farr DF, Rossman AY, Jaklitsch WJ (2003) Diaporthe angelicae comb. nov., a modern description and placement of Diaporthopsis in Diaporthe. Mycoscience 44:203–208

    Google Scholar 

  • Chaeprasert S, Piapukiew J, Whalley AJS, Sihanonth P (2010) Endophytic fungi from mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot Mar 53:555–564. doi:10.1515/BOT.2010.074

    Article  Google Scholar 

  • Chang C, Cheng Y, Xiang M, Jiang Z, Qi P (2004) New species of Phomopsis on woody plants in Fujian province. Mycosystema 24:6–11

    Google Scholar 

  • Charudattan R (2000) Current status of biological control of weeds. In: Kennedy GG, Sutton TB (eds) Emerging technologies for integrated pest management: concepts, research, and implementation. APS, St. Paul, pp 269–288

    Google Scholar 

  • Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260. doi:10.1023/A:1011477531101

    Article  Google Scholar 

  • Charudattan R, Shabana YM, De Valario JT, Rosskopf EN (1996) Phomopsis species fungus useful as a broad-spectrum bioherbicide to control.US patent 5 510 316

  • Chen WQ, Ntahimpera N, Morgan DP, Michailides TJ (2002a) Mycoflora of Pistacia vera in the central valley, California. Mycotaxon 83:147–158

    Google Scholar 

  • Chen YQ, Jiang Z, Qi PK (2002b) Application of RAPD and ITS region sequence analyses on classification and identification of Phomopsis. Mycosystema 21:39–46. doi:10073515.0.2002-01-011

    CAS  Google Scholar 

  • Cheng Z, Tang W, Xu S, Sun S, Huang B, Yan X, Chen Q, Lin Y (2006) First report of an endophyte (Diaporthe phaseolorum var. sojae) from Kandelia candel. J For Res 19:277–282. doi:10.1007/s11676-008-0049-9

    Article  Google Scholar 

  • Chi P, Jiang Z, Xiang M (2007) Flora Fungorum Sinicorum 34: Phomopsis. Science, Beijing

    Google Scholar 

  • Cho WD, Shin HD (2004) List of plant diseases in Korea, 4th edn. Korean Soc Plant Pathol

  • Claydon N, Grove JF, Pople M (1985) Elm bark beetle boring and feeding deterrents from Phomopsis oblonga. Phytochemistry 24:937–943. doi:10.1016/S0031-9422(00)83157-X

    Article  CAS  Google Scholar 

  • Coomaraswamy U (1979) A Handbook to the fungi parasitic on the plants of Sri Lanka MAB-UNESCO 4:56–58

  • Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61:411–428

    PubMed  CAS  Google Scholar 

  • Cowley RB, Ash GJ, Harper DI, Orchard BA (2008) Using detached leaves and pods to screen for resistance to Phomopsis (Diaporthe toxica) in Lupinus albus. ‘Lupins for Health and Wealth’ Proceedings of the 12th International Lupin Conference. Fremantle, Western Australia. International Lupin Association, Canterbury, New Zealand

  • Cowling WA, Wood PM, Brown APG (1984) The use of paraquat-diquuat herbicide for the detection of Phomopsis leptostromiformis infection in lupins. Australas Plant Pathol 13:45–46

    Article  Google Scholar 

  • Cristescu C (2003) A new species of Phomopsis Sacc. (Mitosporic fungi) in Romania. Rev Roum Boil–Biol Veget 48:45–49

    Google Scholar 

  • Cristescu C (2007) The morphology and anatomy of structure somatic and reproductive of species of Phomopsis Sacc. Bubak. Buletinul Grădinii Botanice Iaşi Tomul 14:19–27

    Google Scholar 

  • Crouch JA, Clarke BB, Hillman BI (2009) What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia 101:648–656. doi:10.3852/08-231

    Article  PubMed  Google Scholar 

  • Crous PW (2005) Impact of molecular phylogenetics on the taxonomy and diagnostics of fungi. Bull OEPP/EPPO 35:47–51

    Google Scholar 

  • Crous PW, Phillips AJL, Baxter AP (2000) Phytopathogenic Fungi from South Africa. University of Stellenbosch, Department of Plant Pathology Press. 358pp

  • Cunnington J (2003) Pathogenic fungi on introduced plants in Victoria. A host list and literature guide for their identification. Department of Primary Industries, Research Victoria

  • Dai CC, Yu BY, Zhao YT, Jiang JH, Yang QY (2006) The screening and identification of endophytic fungi from four species of family Euphorbiaceae and the strain sp. antibacterial activity. J Nanjing Forestry Univ (Nat Sci Edn) 30:79–83

    Google Scholar 

  • Dai CC, Yuan ZL, Yang QY, Shi QS, Li X (2008) The effect of increasing production of endophytes Phomopsis B3 on rice. Agric Sci Technol 9:39–42

    Google Scholar 

  • Dai CC, Chen Y, Tian L, Sh Y (2010) Correlation between invasion by endophytic fungus Phomopsis sp. and enzyme production. Afr J Agric Res 5:1324–1340

    Google Scholar 

  • Davis RD (2001) Asparagus stem blight recorded in Australia. Australas Pl Pathol 30:181–182

    Article  Google Scholar 

  • Diogo ELF, Santos JM, Phillips AJL (2010) Phylogeny, morphology and pathogenicity of Diaporthe and Phomopsis species on almond in Portugal. Fungal Divers 44:107–115

    Article  Google Scholar 

  • Du M, Schardl CL, Nuckles EM, Vaillancourt LJ (2005) Using mating-type gene sequences for improved phylogenetic resolution of Colletotrichum species complexes. Mycologia 97:641–658

    Article  PubMed  CAS  Google Scholar 

  • Dudka IO, Heluta VP, Tykhonenko YY, Andrianova TV, Hayova VP, Prydiuk MP, Dzhagan, VV, Isikov VP (2004) Fungi of the Crimean Peninsula. M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine

  • Dvořák M, Palovčíková D, Jankovský L (2006) The occurrence of endophytic fungus Phomopsis oblonga on elms in the area of southern Bohemia. J For Sci 52:531–535

    Google Scholar 

  • Ebbels DL, Allen DJ (1979) A supplementary and annotated list of plant diseases, pathogens and associated fungi in Tanzania. Phytopathol Pap 22:1–89

    Google Scholar 

  • Elena K (2006) First report of Phomopsis asparagi causing stem blight of asparagus in Greece. Plant Pathol 55:300

    Article  Google Scholar 

  • Fabre MJH (1883) Spheriacees du Departement de Vaucluse. Ann Sci Nat Bot Ser 6 1531–69

    Google Scholar 

  • Farr DF, Rossman AY (2011) Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. Retrieved February 6, 2011, from /fungaldatabases/

  • Farr DF, Castlebury LA, Pardo-Schultheiss RA (1999) Phomopsis amygdali causes peach shoot blight of cultivated peach trees in the southeastern United States. Mycologia 91:1008–1015

    Article  Google Scholar 

  • Farr DF, Castlebury LA, Rossman AY (2002a) Morphological and molecular characterization of Phomopsis vaccinii and additional isolates of Phomopsis from blueberry and cranberry in the eastern United States. Mycologia 94:494–504

    Article  PubMed  CAS  Google Scholar 

  • Farr DF, Castlebury LA, Rossman AY, Putnam ML (2002b) A new species of Phomopsis causing twig dieback of Vaccinium vitis-idaea (lingonberry). Mycol Res 106:745–752

    Article  Google Scholar 

  • Fathima SK, Bhat SS, Girish K (2004) Variation in Phomopsis azadirachtae, the incitant of die-back of neem. Indian Phytopathol 57:30–33

    Google Scholar 

  • French AM (1989) California plant disease host index. Calif. Dept. Food Agric, Sacramento

    Google Scholar 

  • Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Reyne A, López-Medrano F et al (2011) Cutaneous infection by Phomopsis longicolla in a renal transplant recipient from Guinea: first report of human infection by this fungus. Transpl Infect Dis 13:204–207. doi:10.1111/j.1399-3062.2010.00570

    Article  PubMed  CAS  Google Scholar 

  • Gehlot P, Attitalla IH, Salleh B (2010) Anamorphic fungi: an overview. Middle-East J Sci Res 6:2010–2018

    Google Scholar 

  • Ginns JH (1986) Compendium of plant disease and decay fungi in Canada 1960–1980. Res Br Can Agric Publ 1813:416

    Google Scholar 

  • Girish K (2007) Studies on the biology and management of Phomopsis azadirachtae—the incitant of die-back disease on neem (Azadirachta indica A. Juss). Ph.D. thesis, University of Mysore. Mysore, India

  • Girish K, Bhat SS (2008) Phomopsis azadirachtae—the dieback of neem pathogen. Electron J Biol 4:112–119

    Google Scholar 

  • Girish K, Bhat SS, Raveesha KA (2009) PCR-based detection of Phomopsis azadirachtae in die-back affected neem seeds. Arch Phytopathol Plant Protect 42:626–632

    Article  CAS  Google Scholar 

  • Gleason ML, Ghabrial SA, Ferriss RS (1987) Serological detection of Phomopsis longicolla in soybean seeds. Phytopathology 77:371–375

    Article  CAS  Google Scholar 

  • González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42. doi:10.1007/s13225-010-0073-x

    Article  Google Scholar 

  • González-Fernández R, Prats E, Jorrín-Novo JV (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010:1–36. doi:10.1155/2010/932527

    Article  CAS  Google Scholar 

  • Gorter GJMA (1977) Index of plant pathogens and the diseases they cause in cultivated plants in South Africa. Repub S Afr Dept Agric Techn Serv Plant Protect Res Inst Sci Bull 392:1–177

    Google Scholar 

  • Gratz LO (1942) The perfect stage of Phomopsis vexans. Phytopathology 32:540–542

    Google Scholar 

  • Greaves MP, Holloway PJ, Auld BA (1998) Formulation of microbial herbicides. In: Burges HD (ed) Formulation of microbial biopesticides, beneficial microorganisms, nematodes and seed treatments. Kluwer, London, pp 203–234

    Google Scholar 

  • Green RJ (1977) Dieback of black walnut seedlings caused by Phomopsis elaeagni. Plant Dis Report 61:5825–5884

    Google Scholar 

  • Guido MAD, Pollastro S, Carlucci A, Angelini RMDM, Faretra F (2003) Phomopsis viticola is easily transformed with hph and Bmlr genes. J Plant Pathol 85:43–52

    Google Scholar 

  • Gurgel LMS, Menezes M, Coelho RSB (2000) Differentiation of Phomopsis anacardii and Phomopsis mangiferae by electrophoretic patterns of proteins and isoenzymes. Summa Phytopathol 26:435–440

    CAS  Google Scholar 

  • Hahn GG (1930) Life-history studies of the species of Phomopsis occurring on conifers. Trans Br Mycol Soc 15:3293

    Article  Google Scholar 

  • Hahn GG (1940) Distribution and hosts of cedar blight in the United States. Plant Dis Report 24:52–57

    Google Scholar 

  • Hahn GG (1943) Taxonomy, distribution, and pathology of Phomopsis occulta and P. juniperovora. Mycologia 35:112–129

    Article  Google Scholar 

  • Hampson MC (1981) Phomopsis canker on weeping fig in Newfoundland. Can Plant Dis Surv 61:3–5

    Google Scholar 

  • Hawksworth DL (2011) Naming Aspergillus species: progress towards one name for each species. Med Mycol 49:70–76

    Article  Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891

    Article  PubMed  CAS  Google Scholar 

  • Hemtasin C, Kanokmedhakul S, Kanokmedhakul K, Hahnvajanawong C, Soytong K, Prabpai S, Kongsaeree P (2011) Cytotoxic pentacyclic and tetracyclic aromatic sesquiterpenes from Phomopsis archeri. J Nat Prod 74:609–613. doi:10.1021/np100632g

    Article  PubMed  CAS  Google Scholar 

  • Herbert PDN, Cywinska A, Ball SL, Dewaard JR (2003) Biological identification through DNA barcodes. Proc R Soc B Bio 270:312–321

    Google Scholar 

  • Hilton S (2000) Canadian plant disease survey. Agric Agri-Food Can 80:151

    Google Scholar 

  • Hobbs TW, Schmitthenner AF, Kuter GA (1985) A new Phomopsis species from soybean. Mycologia 77:535–544

    Article  Google Scholar 

  • Höhnel FV, Litschauer V (1906) Beiträge zur Kenntnis der Corticieen (I. Mitteilung). Sitzber K Akad Wiss Math.-Nat Kl 115:1549–1620

    Google Scholar 

  • Holliday P (1980) Fungus diseases of tropical crops. Cambridge University Press, Cambridge

    Google Scholar 

  • Horn WS, Schwartz RE, Simmonds MSJ, Blaney WM (1994) Isolation and characterization of phomodiol, a new antifungal from Phomopsis. Tetrahedron Lett 35:6037–6040. doi:10.1016/0040-4039(94)88068-9

    Article  CAS  Google Scholar 

  • Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1995) Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron 51:3969–3978. doi:10.1016/0040-4020(95)00139-Y

    Article  CAS  Google Scholar 

  • Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1996) Variation in production of phomodiol and phomopsolide B by Phomopsis spp. Mycologia 88:588–595

    Article  CAS  Google Scholar 

  • Huang WY, Cai YZ, Hyde KD, Cork H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Hyde KD (1991) Phomopsis mangrovei, from intertidal prop roots of Rhizophora spp. Mycol Res 95:1149–1151

    Article  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Hyde KD, Zhang Y (2008) Epitypification: should we epitypify? J Zhejiang Univ-Sci 9:842–846

    Article  Google Scholar 

  • Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, McKenzie EHC, Photita W, Lumyong S (2007) Biodiversity of saprobic fungi. Biodivers Conserv 16:17–35

    Article  Google Scholar 

  • Hyde KD, Abd-Elsalam K, Cai L (2010a) Morphology: still essential in a molecular world. Mycotaxon 114:439–451

    Article  Google Scholar 

  • Hyde KD, Chomnunti P, Crous PWC, Groenewald JZ, Damm U, KoKo TW, Shivas RG, Summerell BA, Tan YP (2010b) A case for re-inventory of Australia’s plant pathogens. Persoonia 25:50–60. doi:10.3767/003158510X548668

    Article  PubMed  CAS  Google Scholar 

  • Hyde KD, McKenzie EHC, KoKo TW (2011) Towards incorporating anamorphic fungi in a natural classification—checklist and notes for 2010. Mycosphere 2:1–88

    Google Scholar 

  • Inacio CA, Dianese JC, Carlos RME (1999) Phomopsis amaranthophila sp. nov., a new coelomycete pathogenic to Amaranthus tricolor in Brazil. Fitopatol Brasil 24:185–189

    Google Scholar 

  • Index Fungorum (2011) http://www.indexfungorum.org/names/names.asp

  • Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018

    Article  PubMed  CAS  Google Scholar 

  • Jiang SS, Ma HB (2010) A new species of Phomopsis on Castanea mollissima. Mycosystema 29:467–471

    CAS  Google Scholar 

  • Jones DR, Baker RHA (2007) Introductions of non-native plant pathogens into Great Britain, 1970–2004. Plant Pathol 56:891–910

    Article  Google Scholar 

  • Jurković D, Vrandečić K, Ćosić J, Riccioni L, Duvnjak T (2007) Morphological identification of Diaporthe/Phomopsis sp isolated from Xanthium italicum. Poljoprivreda (Osijek) 13:10–14

    Google Scholar 

  • Kajitani Y, Kanematsu S (2000) Diaporthe kyushuensis sp. nov., the teleomorph of the causal fungus of grapevine swelling arm in Japan, and its anamorph Phomopsis vitimegaspora. Mycoscience 41:111–114

    Article  Google Scholar 

  • Kanematsu S, Kobayashi T, Kudo A, Ohtsu Y (1999) Conidial morphology, pathogenicity and culture characteristics of Phomopsis isolates from peach, Japanese pear and apple in Japan. Ann Phytopathol Soc Jpn 65:264–273

    Article  Google Scholar 

  • Kanematsu S, Minaka N, Kobayashi T, Kudo A, Ohtsu Y (2000) Molecular phylogenetic analysis of ribosomal DNA internal transcribed spacer regions and comparison of fertility in Phomopsis isolates from fruit trees. J Gen Plant Pathol 66:191–201. doi:10.1007/PL00012944

    Article  CAS  Google Scholar 

  • Kanematsu S, Adachi Y, Ito T (2007) Mating-type loci of heterothallic Diaporthe spp.: homologous genes are present in opposite mating-types. Curr Genet 52:11–22

    Article  PubMed  CAS  Google Scholar 

  • Kano S, Kurita T, Kanematsu S, Morinaga T (2011) Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus Rosellinia necatrix. Microbiology 80:82–88. doi:10.1134/S0026261711010103

    Article  CAS  Google Scholar 

  • Kathiravan G, Raman VS (2010) In vitro taxol production, by Pestalotiopsis breviseta—a first report. Fitoterapia 81:557–564. doi:10.1016/j.fitote.2010.01.021

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T (2007) Index of fungi inhabiting woody plants in Japan. Host, Distribution and Literature. Zenkoku-Noson-Kyoiku Kyokai Publishing Co. Ltd.

  • Kodsueb R, McKenzie EHC, Lumyong S, Hyde KD (2008a) Diversity of saprobic fungi on Magnoliaceae. Fungal Divers 30:37–53

    Google Scholar 

  • Kodsueb R, McKenzie EHC, Lumyong S, Hyde KD (2008b) Fungal succession on woody litter of Magnolia liliiflora (Magnoliaceae). Fungal Divers 30:55–72

    Google Scholar 

  • Kronstad JW, Staben C (1997) Mating type of filamentous fungi. Annu Rev Genet 31:245–276. doi:10.1146/annurev.genet.31.1.245

    Article  PubMed  CAS  Google Scholar 

  • Kuhn JG (1913) Phomopsis leptostromiformis Bubák, in Lind, Danish Fungi (Copenhagen)

  • Kulik MM (1984) Failure of Phomopsis phaseoli to produce mature pycnidia in senescent soybean stems at the end of the growing season. Mycologia 76:863–867

    Article  Google Scholar 

  • Kulik MM, Sinclair JB (1999) Phomopsis seed decay. In: Hartman GL, Sinclair JB, Rupe JC (eds) Compendium of soybean diseases. APS symp ser, pp 31–32

  • Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Kuo KC, Leu LS (1998) Phomopsis vitimegaspora: a new pathogenic Phomopsis from vines. Mycotaxon 66:497–499

    Google Scholar 

  • Lenne JM (1990) World list of fungal diseases of tropical pasture species. Phytopathol Pap 31:1–162

    Google Scholar 

  • Leth V, Netland J, Andreasen C (2008) Phomopsis cirsii: a potential biocontrol agent of Cirsium arvense. Weed Res (Oxford) 48:533–541. doi:10.1111/j.1365-3180.2008.00666.x

    Article  Google Scholar 

  • Li S, Hartman GL, Boykin DL (2010a) Aggressiveness of Phomopsis longicolla and other Phomopsis spp. on soybean. Plant Dis 94:1035–1040

    Article  Google Scholar 

  • Li YY, Wang MZ, Huang YJ, Shen YM (2010b) Secondary metabolites from Phomopsis sp. A123. Mycology 1:254–261

    Article  CAS  Google Scholar 

  • Linders EGA, Enrico GA, Van Der Aa HA (1995) Taxonomy, sexuality and mating types of Diaporthe adunca. Mycol Res 99:1409–1416. doi:10.1016/S0953-7562(09)80786-7

    Article  Google Scholar 

  • Liu L (2011) Bioactive metabolites from the plant endophyte Pestalotiopsis fici. Mycology 2:37–45. doi:10.1080/21501203.2011.562248

    Article  CAS  Google Scholar 

  • Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microb 67:1–6. doi:10.1128/AEM.67.5.1987-1994.2001

    Article  Google Scholar 

  • Lu B, Hyde KD, Ho WH, Tsui KM, Taylor JE, Wong KM, Yanna Y, Zhou D (2000) Checklist of Hong Kong fungi. Fungal Diversity, Hong Kong

    Google Scholar 

  • Luo LJ, Xi PG, Jiang Z, Qi PK (2004) Sporulation conditions of Phomopsis in pure culture. Mycosystema 23:219–225

    Google Scholar 

  • Lutchmeah RS (1992) A new disease of passion fruit in Mauritius: postharvest stem-end rot caused by Phomopsis tersa. Plant Pathol 41:772–773

    Article  Google Scholar 

  • Machowicz-Stefaniak Z (2009) the occurrence of biotic activity of Phomopsis diachenii Sacc. Acta Agro Bot 62:125–135

    Google Scholar 

  • Maffel HM, Morton HL (1983) Phomopsis canker of Russian-olive in southeastern Michigan. Plant Dis 67:964–965

    Article  Google Scholar 

  • McKeen CD (1957) Phomopsis black rot of Cucurbits. Can J Bot 35:43–50

    Article  Google Scholar 

  • McKenzie EHC (1992) Fungi of the Kermadec Islands. Mycotaxon 45:149–170

    Google Scholar 

  • McNeill J, Turland N (2005) Synopsis of proposals on botanical nomenclature—Vienna A review of the proposals concerning the International Code of Botanical Nomenclature submitted to the XVII International Botanical Congress. Turland Taxon 54:215–250

    Article  Google Scholar 

  • Meenavalli B, Rajulu G, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, Gueddari NEE, Moerschbacher BM (2011) Chitinolytic enzymes from endophytic fungi. Fungal Divers 47:43–53. doi:10.1007/s13225-010-0071-z

    Article  Google Scholar 

  • Mel’nik VA, Shabunin DA, Popov ES (2008) Contributions to the studies of mycobiota in Novgorod and Pskov regions. II. Coelomycetes. Mikol Fitopatol 42:43–52

    Google Scholar 

  • Melanson DL, Rawnsley B, Scheper RWA (2002) Molecular detection of Phomopsis taxa 1 and 2 in grapevine cane and buds. Australas Plant Pathol 31:67–73

    Article  Google Scholar 

  • Melnik VA, Pystina KA (1995) Novitates de micromycetibus reservati svirensis inferioris. Novosti Sist Nizsh Rast 30:29–36

    Google Scholar 

  • Mendes MAS, da Silva VL, Dianese JC (1998) Fungos em Plants no Brasil. Embrapa-SPI/Embrapa-Cenargen, Brasilia

    Google Scholar 

  • Mengistu A, Castlebury LA, Smith JR, Rossman AY, Reddy KN (2007) Isolates of Diaporthe-Phomopsis from weeds and their effect on soybean. Can J Plant Pathol 29:283–289

    Article  CAS  Google Scholar 

  • Merrin SJ, Nair NG, Tarran J (1995) Variation in Phomopsis recorded on grapevine in Australia and its taxonomic and biological implications. Australas Plant Pathol 24:44–56

    Article  Google Scholar 

  • Meyer MD, Zhang GR, Pedersen DK, Bradley CA (2009) First report of Phomopsis stem canker of sunflower in Illinois caused by Phomopsis helianthi. Plant Dis 93:760–761

    Article  Google Scholar 

  • Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270. doi:10.1099/mic.0.032540-0

    Article  PubMed  CAS  Google Scholar 

  • Moleleki N, Preisig O, Wingfield MJ, Crous PW, Wingfield BD (2002) PCR-RFLP and sequence data delineate three Diaporthe species associated with stone and pome fruit trees in South Africa. Eur J Plant Pathol 108:909–912

    Article  CAS  Google Scholar 

  • Moncalvo JM (2005) Molecular systematics: major fungal phylogenic groups and fungal species concepts. In: Xu JP (ed) Evolutionary genetics of fungi. Horizon Scientific, Norfolk, pp 1–33

    Google Scholar 

  • Mondal SN, Vicent A, Reis RF, Timmer LW (2007) Saprophytic colonization of citrus twigs by Diaporthe citri and factors affecting pycnidia production and conidial survival. Plant Dis 91:387–392

    Article  Google Scholar 

  • Morgan-Jones G (1989). The Diaporthe/Phomopsis complex: taxonomical considerations 1699–1706. In: Pascale AJ (ed) Proc World soybean Res. Conf. 4th. Realizacion, Orientacion, Grafica Editora, S.rl.L., Brunes Aires

  • Moricca S (2002) Phomopsis alnea, the cause of dieback of black alder in Italy. Plant Pathol 51:755–764

    Article  Google Scholar 

  • Morin L, Watson AK, Reeleder RD (1989) Efficacy of Phomopsis convolvulus for control of field bindweed (Convolvulus arvensis). Weed Sci 37:830–835

    Google Scholar 

  • Morris MJ (1984) Additional diseases of Emex-Australis in South Africa. Phytophylactica 16:171–176

    Google Scholar 

  • Mortensen K (1997) Biological control of weeds using microorganisms. In: Boland GJ, Kuykendall LD (eds) Plant–microbe interactions and biological control. Marcel Dekker, New York, pp 223–248

    Google Scholar 

  • Mostert L, Crous PW, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia 52:46–58

    Google Scholar 

  • Mostert L, Crous PW, Kang JC, Phillips AJL (2001a) Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia 93:146–167

    Article  Google Scholar 

  • Mostert L, Kang JC, Crous PW, Denman S (2001b) Phomopsis saccharata sp. nov., causing a canker and die-back disease of Protea repens in South Africa. Sydowia 53:227–235

    Google Scholar 

  • Munk A (1957) Danish pyrenomycetes. A preliminary flora. Dansk Bot Ark 17:1–491

    Google Scholar 

  • Muntanola-Cvetković M, Mihaljčević M, Petrov M (1981) On the identity of the causative agent of a serious Phomopsis-Diaporthe disease in sunflower plants. Nova Hedwigia 34:417–435

    Google Scholar 

  • Muntanola-Cvetković M, Bojović-Cvetić D, Franić-Mihajlović D, Vukojević J (1990) Hyphal interference and antagonism among Diaporthe or Phomopsis species and sensitivity toward antifungal metabolites. In: IV International Mycological Congress. Regensburg, Germany. Abstracts, IB-86

  • Muntañola-Cvetkovic M, Vukojevic J, Mihaljcevic M (2000) Differential growth inhibition of Diaporthe and Phomopsis isolates by the metabolic activity of five actinomycetes. J Phytopathol 148:289–295. doi:10.1046/j.1439-0434.2000.00496.x

    Article  Google Scholar 

  • Muntañola-Cvetković M, Mitić N, Vukojević J (1992) Verification of the inhibitory effects provoked by several Actinomycetes on the growth of the fungus Phomopsis helianthi and congeneric species. In: Proc. 13th Int. Sunflower Conf, Pisa. 1:785–790

  • Muntañola-Cvetković M, Vukojević J, Mihaljcêević M (1996) Cultural growth patterns and incompatibility reactions in Diaporthe and Phomopsis populations. J Phytopathol 144:285–295

    Article  Google Scholar 

  • Murali TS, Suryanarayanan TS, Geeta R (2006) Endophytic Phomopsis species: host range and implications for diversity estimates. Can J Microbiol 52:673–680

    Article  PubMed  CAS  Google Scholar 

  • Nagendra Prasad MN, Bhat SS, Charith Raj AP, Janardhana GR (2006) Molecular detection of Phomopsis azadirachtae, the causative agent of dieback disease of neem by polymerase chain reaction. Curr Sci 91:158–159

    Google Scholar 

  • Nagendra Prasad MN, Bhat SS, Sreenivasa MY (2010) Antifungal activity of essential oils against Phomopsis azadirachtae—the causative agent of die-back disease of neem. J Agri Tech 6:127–133

    Google Scholar 

  • Nagendra Prasad MN, Bhat SS, Dharwar VN, Mehta BS, Chauhan A (2011) In vitro efficacy of plant essential oils against Phomopsis azadirachtae—the causative agent of die-back disease of neem. Arch Phytopathol Plant Protect 44:412–418. doi:10.1080/03235400903092941

    Article  CAS  Google Scholar 

  • Nelson S (2008) Citrus melanose. Plant disease PD-59: college of tropical agriculture and human resources: Manoa http://www.ctahr.hawaii.edu/oc/freepubs/pdf/PD-59.pdf

  • Nevena M, Jelena V, Franic-Mihajlovic D (1997) A comparative study of Diaporthe/Phomopsis fungi on soybean from two different regions of the world. Mycopathologia 139:107–113

    Article  PubMed  CAS  Google Scholar 

  • Nikandrow A, Weidemann GJ, Auld BA (1990) Incidence and pathogenicity of Colletotrichum orbiculare and a Phomopsis sp. on Xanthium spp. Plant Dis 74:796–799

    Article  Google Scholar 

  • Nithya K, Muthumary J (2011) Bioactive metabolite produced by Phomopsis sp. an endophytic fungus in Allamanda cathartica Linn. Recent Res Sci Tech 3:44–48

    Google Scholar 

  • Oak SW, Dorset RD (1983) Phomopsis canker of European black alder found in Kentucky seed-production areas. Plant Dis 67:691–693

    Article  Google Scholar 

  • Ohsawa T, Kobayashi T (1989) Concave rot of melon fruit caused by two Phomopsis fungi. Ann Phytopathol Soc Jpn 55:410–419

    Article  Google Scholar 

  • Onesirosan PT (1978) Factors affecting sporulation by Phomopsis phaeolorum. Mycopathologia 64:23–27. doi:10.1007/BF00443084

    Article  Google Scholar 

  • Ormeno-Nunez J, Reeleder RD, Watson AK (1988) A foliar disease of field bindweed (Convolvulusa rvensis L.) caused by Phomopsis convolvulus. Plant Dis 72:338–342

    Article  Google Scholar 

  • Ortiz-Ribbing L, Williams MM (2006) Conidial germination and germ tube elongation of Phomopsis amaranthicola and Microsphaeropsis amaranthi on leaf surfaces of seven Amaranthus species: implications for biological control. Biol Control 38:356–362

    Article  Google Scholar 

  • Osmonalieva A, McNeil DL, Stewart A, Klinac DJ, Wadia KDR (2001) Phomopsis castanea infection of chestnut in New Zealand. Proceedings of the 10th Australian Agronomy Conference, January 2001, Hobart, Tasmania

  • Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in cool temperate deciduous forest in Japan. Mycologia 94:421–427

    Article  PubMed  CAS  Google Scholar 

  • Ostazeski SA, Wells HD (1960) A Phomopsis stem blight of yellow lupine (Lupinus luteus L.). Plant Dis Report 44:66–67

    Google Scholar 

  • Ou SH (1985) Rice diseases. 2nd edn. Commonwealth Mycological Institute.

  • Ozerskaya SM, Vasilenko AN, Verslyppe B, Dawyndt P (2010) FungalDC: a database on fungal diversity in culture collections of the world. Inoculum Supp Mycologia 61:1–4

    Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Payne AL (1983) Biosynthesis of radiolabeled phomopsin by Phomopsis leptostromiformis. Appl Environ Microb 45:389–392

    CAS  Google Scholar 

  • Pearce C (1997) Biologically active fungal metabolites. Adv Appl Microbiol 44:1–80. doi:10.1016/S0065-2164(08)70459-3

    Article  PubMed  CAS  Google Scholar 

  • Pecchia S, Mercatelli E, Vannacci G (2004) Intraspecific diversity within Diaporthe helianthi: evidence from rDNA intergenic spacer (IGS) sequence analysis. Mycopathologia 157:317–326. doi:10.1023/B:MYCO.0000024185.66158.7e

    Article  PubMed  CAS  Google Scholar 

  • Pennycook SR (1989) Plant diseases recorded in New Zealand. Plant Dis Div, D.S.I.R., Auckland

  • Pereira JM, Barreto RW (2001) Additions to the mycobiota of the weed Lantana camara (Verbenaceae) in southeastern Brazil. Mycopathologia 151:71–80. doi:10.1023/A:1010929611439

    Article  PubMed  CAS  Google Scholar 

  • Phillips AJL (1999) The relationship between Diaporthe perjuncta and Phomopsis viticola on grapevines. Mycologia 91:1001–1007

    Article  Google Scholar 

  • Phillips AJL (2000) Excoriose, cane blight and related disease of grapevines: a taxonomic review of the pathogens. Phytopathol Medit 39:341–356

    Google Scholar 

  • Phoulivong S, Cai L, Chen H, McKenzie EHC, Abdelsalam K et al (2010) Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Divers 44:33–43. doi:10.1007/s13225-010-0046-0

    Article  Google Scholar 

  • Prachya S, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Mahidol C, Ruchirawat S, Kittakoop P (2007) Cytotoxic mycoepoxydiene derivatives from an endophytic fungus Phomopsis sp. isolated from Hydnocarpus anthelminthicus. Planta Med 73:1418–1420

    Article  PubMed  CAS  Google Scholar 

  • Preisig O, Moleleki N, Smit WA, Wingfield BD, Wingfield MJ (2000) A novel RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua. J Gen Virol 81:3107–3114

    PubMed  CAS  Google Scholar 

  • Prihastuti H, Cai L, Chen H, McKenzie EHC, Hyde KD (2009) Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Divers 39:89–109

    Google Scholar 

  • Promputtha I, Jeewon R, Lumyong S, McKenzie EHC, Hyde KD (2005) Ribosomal DNA fingerprinting in the identification of non sporulating endophytes from Magnolia liliiflora (Magnoliaceae). Fungal Divers 20:167–186

    Google Scholar 

  • Promputtha I, Lumyong S, Vijaykrishna D, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    Article  PubMed  Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99. doi:10.1007/s13225-010-0024-6

    Article  Google Scholar 

  • Punithalingam E (1974) Studies on Sphaeropsidales in culture. II. Mycol Pap 136:1–63

    Google Scholar 

  • Punithalingam E (1975) Some new species and combinations in Phomopsis. Trans Brit Mycol Soc 64:427–435

    Article  Google Scholar 

  • Punithalingam E (1981) Dieback and leathery fruit rot of Capsicum. Mycol Pap 149:2–3

    Google Scholar 

  • Punithalingam E (1985) Phomopsis anacardii. CMI Descr Pathog Fungi Bact 826:1–2

    Google Scholar 

  • Punithalingam E (1993) Phomopsis mangiferae CMI Descr Fungi Bact 1168. Mycopathologia 123:59–60

    Article  Google Scholar 

  • Punithalingam E, Gibson IAS (1972) Phomopsis theae. CMI Descr Pathog Fungi Bac 330

  • Punithalingam E, Gibson IAS (1975) Diaporthe woodii. CMI Descr Pathog Fungi Bact 476:1–2

    Google Scholar 

  • Punithalingam E, Holliday P (1973) Diaporthe citri. CMI Descr Pathog Fungi Bact 396:1–2

    Google Scholar 

  • Punithalingam E, Holliday P (1975) Phomopsis cucurbitae. CMI Descr Pathog Fungi Bact 469:1–2

    Google Scholar 

  • Raabe RD, Conners IL, Martinez AP (1981) Checklist of plant diseases in Hawaii

  • Rawnsley B (2002) Phomopsis type 1 on grapevine: pathogenicity and management. PhD thesis. The University of Adelaide, South Australia

  • Rawnsley B, Wicks TJ, Scott ES, Stummer BE (2004) Diaporthe perjuncta does not cause Phomopsis cane and leaf spot disease of grapevine in Australia. Plant Dis 88:1005–1010

    Article  Google Scholar 

  • Reclame P (2010) Limseed reports Asparagus breeding newsletter: Phomopsis asparagi http://www.limseeds.com/news/news10_2e.pdf

  • Redkoa F, Clavina ML, Weber D, Raneac F, Ankeb T, Martinoa V (2007) Antimicrobial isoflavonoids from Erythrina crista galli infected with Phomopsis sp. Z Naturforsch 62c:164–168

    Google Scholar 

  • Rehner SA, Uecker FA (1994) Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete Phomopsis. Can J Bot 72:1666–1674

    Article  CAS  Google Scholar 

  • Reifschneider FJB, Lopes CA (1982) Phoma asparagi on asparagus. FAO Plant Protect Bull 30:157

    Google Scholar 

  • Rekab D, Sorbo D, Reggio G, Zoina A, Firrao G (2004) Polymorphisms in nuclear rDNA and mtDNA reveal the polyphyletic nature of isolates of Phomopsis pathogenic to sunflower and a tight monophyletic clade of defined geographic origin. Mycol Res 108:393–402

    Article  PubMed  CAS  Google Scholar 

  • Rhouma A, Triki MA, Ouerteni K, Mezghanni M (2008) Chemical and biological control of Phomopsis amygdali the causal agent of constriction canker of almond in Tunisia. Tunis J Plant Protect 3:69–77

    Google Scholar 

  • Riccioni C, Belfiori B, Rubini A, Passeri V, Arcioni S, Paolocci F (2008) Tuber melanosporum outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytol 180:466–478. doi:10.1111/j.1469-8137.2008.02560.x

    Article  PubMed  CAS  Google Scholar 

  • Riedl H, Wechtl E (1981) Proposal to conserve the name Phomopsis (Sacc.) Bubak (1905) against Myxolibertella Hohnel (1903). Taxon 30:826–828

  • Rocha ACS, Garcia D, Uetanabaro APT, Carneiro RTO, Araújo IS, Mattos CRR, Góes-Neto A (2011) Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Divers 47:75–84. doi:10.1007/s13225-010-0044-2

    Article  Google Scholar 

  • Rodeva R, Gabler J (2004) First report of Phomopsis diachenii in Bulgaria. Mycol Balc 1:153–157

    Google Scholar 

  • Rodeva R, Stoyanova Z, Pandeva R (2009) A new fruit disease of pepper in Bulgaria caused by Phomopsis capsici. Acta Hortic 830:551–556

    Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003a) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    Article  PubMed  CAS  Google Scholar 

  • Rokas A, King N, Finnerty JR, Carroll SB (2003b) Conflicting phylogenetic signals at the base of the metazoan tree. Dev Evol 5:346–359

    Article  CAS  Google Scholar 

  • Rosskopf EN, Charudattan R, Shabana YM, Benny GL (2000a) Phomopsis amaranthicola, a new species from Amaranthus sp. Mycologia 92:114–122

    Article  Google Scholar 

  • Rosskopf EN, Charudattan R, DeValerio JT, Stall WM (2000b) Field evaluation of Phomopsis amaranthicola, a biological control agent of Amaranthus spp. Plant Dis 84:1225–1230

    Article  Google Scholar 

  • Rossman AY, Palm-Hernández ME (2008) Systematics of plant pathogenic fungi: why it matters. Plant Dis 92:1376–1386

    Article  Google Scholar 

  • Rossman AY, Farr DF, Castlebury LA (2007) A review of the phylogeny and biology of the Diaporthales. Mycoscience 48:135–144. doi:10.1007/s10267-007-0347-7

    Article  Google Scholar 

  • Saccardo PA (1883) Sylloge Fungorum, II. Padua.

  • Saccardo PA (1884) Sylloge Fungorum 4:1–818

    Google Scholar 

  • Saccardo PA (1905) Notae mycologicae. Series V. Ann Mycol 3:165–171

    Google Scholar 

  • Saccardo PA (1915) Fungi noveboracenses. Ann Mycol 13:115–138

    Google Scholar 

  • Saccardo PA, Saccardo D (1906) Sylloge Fungorum 18:1–838

  • Sampson PJ, Walker J (1982) An annotated list of plant diseases in Tasmania. Department of Agriculture Tasmania

  • Sanogo S, Etarock BF (2009) First report of Phomopsis longicolla causing stem blight of valencia peanut in New Mexico. Plant Dis 93:965

    Article  Google Scholar 

  • Santos JM, Phillips AJL (2009) Resolving the complex of Diaporthe (Phomopsis) species occurring on Foeniculum vulgare in Portugal. Fungal Divers 34:111–125

    Google Scholar 

  • Santos JM, Correia VG, Phillips AJL (2010) Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biol 114:255–270

    Article  PubMed  CAS  Google Scholar 

  • Sateesh MK, Bhat SS, Devaki NS (1997) Phomopsis azadirachtae sp. nov. from India. Mycotaxon 65:517–520

    Google Scholar 

  • Sawada K (1959) Descriptive catalogue of Taiwan (Formosan) fungi. XI. Spec Publ Coll Agric Natl Taiwan Univ 8:1–268

    Google Scholar 

  • Says-Lesage V, Roeckel-Drevet P, Viguie A, Tourvieille J, Nicolas P, de Tourvieille LD (2002) Molecular variability within Diaporthe/Phomopsis helianthi from France. Phytopathology 92:308–313

    Article  PubMed  Google Scholar 

  • Scheper RWA, Crane DC, Whisson DL, Scott ES (2000) The Diaporthe teleomorph of Phomopsis Taxon 1 on grapevine. Mycol Res 104:226–231

    Article  Google Scholar 

  • Schilder AMC, Erincik O, Castlebury L, Rossman A, Ellis MA (2005) Characterization of Phomopsis spp. infecting grapevines in the Great Lakes region of North America. Plant Dis 89:755–762

    Article  Google Scholar 

  • Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, Kalb K, Nelsen MP, Nelson NA, Rivas-Plata E, Shimp AD, Widhelm T, Lumbsch HT (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23:35–40. doi:10.3767/003158509X470602

    Article  PubMed  CAS  Google Scholar 

  • Schroers HJ, Gräfenhan T, Nirenberg HI, Seifert KA (2011) A revision of Cyanonectria and Geejayessia gen. nov., and related species with Fusarium-like anamorphs. Stud Mycol 68:115–138. doi:10.3114/sim.2011.68.05

    Article  PubMed  Google Scholar 

  • Seifert KA, Rossman AY (2010) How to describe a new fungal species. IMA Fungus 1:109–116

    Article  Google Scholar 

  • Senthil Kumaran R, Hur B (2009) Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol Appl Bioc 54:21–30. doi:10.1042/BA20080110

    Article  CAS  Google Scholar 

  • Senthil Kumaran R, Jung H, Kim HJ (2011) In vitro screening of taxol, an anticancer drug produced by the fungus, Colletotrichum capsici. Eng Life Sci 11:1–8. doi:10.1002/elsc.201000119

    Article  Google Scholar 

  • Shaw CG (1973) Host fungus index for the Pacific Northwest—I. Hosts. Wash State Univ Agric Exp Sta Bull 765:1–121

    Google Scholar 

  • Shaw DE (1984) Microorganisms in Papua New Guinea. Dept Primary Ind Res Bull 33:1–344

    Google Scholar 

  • Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Divers 26:1–54

    Google Scholar 

  • Shenoy BD, Jeewon R, Wang HK, Amandeep K, Ho WH, Bhat DJ, Crous PW, Hyde KD (2010) Sequence data reveals phylogenetic affinities of fungal anamorphs Bahusutrabeeja, Diplococcium, Natarajania, Paliphora, Polyschema, Rattania and Spadicoides. Fungal Divers 44:161–169

    Article  Google Scholar 

  • Sherf AF, Macnab AA (1986) Vegetable diseases and their control, 2nd edn. Wiley, New York

    Google Scholar 

  • Shino Y, Nitto A, Shimanuki K, Koseki T, Murayama T, Miyakawa T, Yoshida J, Kimura KI (2009) A new benzoxepin metabolite isolated from endophytic fungus Phomopsis sp. J Antibiot 62:533–535

    Article  CAS  Google Scholar 

  • Shivas RG (1992) Phomopsis emicis sp. nov. on Emex australis in South Africa and Western Australia. Mycol Res 96:75–77

    Article  Google Scholar 

  • Shivas RG, Scott JK (1993) Effect of the stem blight pathogen, Phomopsis emicis, and the weevil, Perapion antiquum, on the weed Emex australis. Ann App Biol 122:617–622

    Article  Google Scholar 

  • Shivas RG, Allen JG, Williamson PM (1991) Infraspecific variation demonstrated in Phomopsis leptostromiformis using cultural and biochemical techniques. Mycol Res 95:320–323

    Article  Google Scholar 

  • Silva GH, Teles HL, Trevisan HC, Bolzani VS, Young MCM et al (2005) New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. J Braz Chem Soc 16:6b. doi:10.1590/S0103-50532005000800029

    Google Scholar 

  • Simmonds JH (1966) Host index of plant diseases in Queensland. Queensland Department of Primary Industries, Brisbane

    Google Scholar 

  • Smith H, Ogilvy D (2008) Nut rot in chestnuts. Aust Nutgrow 22:10–15

    Google Scholar 

  • Smith SA, Tank DC, Boulanger L-A, Bascom-Slack CA, Eisenman K et al (2008) Bioactive endophytes warrants intensified exploration and conservation. PLoS ONE 3:30–52. doi:10.1371/journal.pone.0003052

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol R 67:491–502. doi:10.1128/MMBR.67.4.491-502.2003

    Article  CAS  Google Scholar 

  • Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95. doi:10.1007/s13225-010-0086-5

    Article  Google Scholar 

  • Suryanarayanan TS, Murali TS, Venkatesan G (2002) Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can J Bot 80:818–826

    Article  Google Scholar 

  • Sutton BC (1980) The coelomycetes. Fungi imperfecti with Pycnidia, Acervuli and Stromata. Commonwealth Mycological Institute, Kew, Surrey, England

  • Sutton DA, Fothergill AW, Rinaldi MG (1997) Guide to clinically significant fungi. 491pp

  • Sutton DA, Timm WD, Morgan-Jones G, Rinaldi MG (1999) Human phaeohyphomycotic osteomyelitis caused by the coelomycete Phomopsis Saccardo 1905: criteria for identification, case history, and therapy. J Clin Microbiol 37:807–811

    PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland

  • Tai FL (1979) Sylloge Fungorum Sinicorum. Sci Press Acad Sin Peking

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459. doi:10.1039/B100918O

    Article  PubMed  CAS  Google Scholar 

  • Thaung MM (2008) Biodiversity survey of coelomycetes in Burma. Australas Mycol 27:74–110

    Google Scholar 

  • Thomidis T, Mchailidou O, Tsipouridis C, Michailides Z (2009) Management of latent infections in peaches caused by fungi of genus Monilinia. Phytopathol Mediterr 48:315

    Google Scholar 

  • Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204

    Google Scholar 

  • Trujillo EE (2005) History and success of plant pathogens for biological control of introduced weeds in Hawaii. Biol Control 33:113–122. doi:10.1016/j.biocontrol.2004.11.008

    Article  Google Scholar 

  • Tucker CM (1935) Diaporthe Phaseolorum on pepper fruits. Mycologia 27:580–585

    Article  Google Scholar 

  • Tuset JJ, Portilla MAT (1989) Taxonomic status of Fusicoccum amygdali and Phomopsis amygdalina. Can J Bot 67:1275–1280. doi:10.1139/b89

    Article  Google Scholar 

  • Ubriszy G, Vörös J (1966) Phytopathogenic and saprobic fungi from Hungary. I Acta Phytopathol Acad Sci Hung 1:145–163

    Google Scholar 

  • Udayanga D, Liu XZ, Cai L, Hyde KD (2011) unpublished data

  • Uddin W, Stevenson KL (1997) Pathogenicity of a species of Phomopsis causing a shoot blight on peach in Georgia and evaluation of possible infection courts. Plant Dis 81:983–989. doi:10.1094/PDIS.1997.81.9.983

    Article  Google Scholar 

  • Uddin W, Stevenson KL (1998a) Seasonal development of Phomopsis shoot blight of peach and effects of selective pruning and shoot debris management on disease incidence. Plant Dis 82:565–568

    Article  Google Scholar 

  • Uddin W, Stevenson KL (1998b) Pathogenic and molecular characterization of three Phomopsis isolates from peach, plum and Asian pear. Plant Dis 82:732–737

    Article  CAS  Google Scholar 

  • Uecker FA (1988) A world list of Phomopsis names with notes on nomenclature, morphology and biology. Mycol Mem 13:1–231

    Google Scholar 

  • Uecker FA, Johnson DA (1991) Morphology and taxonomy of species of Phomopsis on asparagus. Mycologia 83:192–199

    Article  Google Scholar 

  • Uecker FA, Kuo KC (1992) A new Phomopsis with long paraphyses. Mycotaxon 44:425–433

    Google Scholar 

  • Umechuruba CI, Biol C (1997) An annotated list of plant diseases in Nigeria. Pen paper publications. Owerri

  • Van der Aa HA, Noordeloos ME, de Gruyter J (1990) Species concepts in some larger genera of the Coelomycetes. Stud Mycol 32:3–19

    Google Scholar 

  • van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253. doi:10.1016/j.tplants.2006.03.005

    Article  PubMed  CAS  Google Scholar 

  • Van Kesteren (1967) Phomopsis sclerotioides. Nethl j Pl path 73:112–116

  • Van Niekerk JM, Groenewald JZ, Farr DF, Fourie PH, Halleen F, Crous PW (2005) Reassessment of Phomopsis species on grapevines. Australas Plant Pathol 34:27–39

    Article  Google Scholar 

  • van Rensburg JCJ, Lamprecht SC, Groenewald JZ, Castlebury LA, Crous PW (2006) Characterization of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa. Stud Mycol 55:65–74. doi:10.3114/sim.55.1.65

    Article  PubMed  Google Scholar 

  • Van Warmelo KT, Marasas WFO (1972) Phomopsis leptostromiformis: the causal fungus of lupinosis, a mycotoxicosis, in sheep. Mycologia 64:316–324

    Article  PubMed  Google Scholar 

  • Van Warmelo KT, Marasas WFO, Adelaar TF, Kellerman TS, van Rensburg IBJ, Minne JA (1970) Experimental evidence that lupinosis of sheep is a mycotoxicosis caused by the fungus Phomopsis leptostromiformis (Kuhn) Bubak. J S Afr Vet Med Assoc 41:235–247

    Google Scholar 

  • Vergara M, Cristani C, Regis C, Vannacci G (2004) A coding region in Diaporthe helianthi reveals genetic variability among isolates of different geographic origin. Mycopathologia 158:123–130

    Article  PubMed  CAS  Google Scholar 

  • Vergara M, Capasso T, Gobbi E, Vannacci G (2005) Plasmid distribution in European Diaporthe helianthi isolates. Mycopathologia 159:591–599. doi:10.1007/s11046-005-1327-0

    Article  PubMed  Google Scholar 

  • Vesterlund SR, Helander M, Faeth SH, Hyvönen T, Saikkonen K (2011) Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Divers 47:109–118. doi:10.1007/s13225-011-0089-x

    Article  Google Scholar 

  • Vidić M (1991) Variability of Diaporthe phaseolorum var. caulivora on soybean in the Vojvodina province in Serbia. Zaštita bilja 197:183–189

    Google Scholar 

  • Viguié A, Vear F, de Labrouhe DT (1999) Interactions between French isolates of Phomopsis/Diaporthe Helianthi Munt.-Cvet. et al. and sunflower (Helianthus annuus L.) genotypes. Eur J Plant Pathol 105:693–702. doi:10.1023/A:1008715816205

    Article  Google Scholar 

  • Vrandecic K, Cosic J, Riccioni L, Duvnjak T, Jurkovic D (2004) Phomopsis longicolla—new pathogen on Abutilon theophrasti in Croatia. Pl Pathol 53:251

    Article  Google Scholar 

  • Vrandecic K, Cosic J, Jurkovic D, Riccioni L, Duvnjak T (2007) First Report of Phomopsis longicolla on cocklebur (Xanthium strumarium) in Croatia. Plant Dis 91:1687

    Article  Google Scholar 

  • Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009

    Article  PubMed  CAS  Google Scholar 

  • Ward E, Foster SJ, Fraaije BA, McCartney (2004) Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Ann Appl Biol 145:1–16

    Article  CAS  Google Scholar 

  • Washington WS, Allen AD, Dooley LB (1997) Preliminary studies on Phomopsis castanea and other organisms associated with healthy and rotted chestnut fruit in storage. Australas Plant Pathol 26:37–43

    Article  Google Scholar 

  • Washington B, Wade S, Knoxfield (2006) Phomopsis nut rot of chestnuts. Agriculture notes. Departmemt of Primary Industries, State of Victoria http://new.dpi.vic.gov.au/agriculture/pests-diseases-and-weeds/plant-diseases/fruit-diseases/stone-fruit-diseases/ag0513-phomopsis-nut-rot-of-chestnuts

  • Webber J, Gibbs JN (1984) Colonization of elm bark by Phomopsis oblonga. Trans Br Mycol Soc 82:348–352

    Article  Google Scholar 

  • Weber D (2009) Endophytic fungi, occurrence and metabolites. Physiology and Genetics The Mycota 15:153–195. doi:10.1007/978-3-642-00286-1_8

  • Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C (2005) Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. ChemInform 36:25–32. doi:10.1002/chin.200511230

    Google Scholar 

  • Wehmeyer LE (1933) The genus Diaporthe Nitschke and its segregates. Univ Michigan Stud, Sci Ser 9:1–349

    Google Scholar 

  • Wheeler MM, Wheeler DMS, Peterson GW (1975) Anthraquinone pigments from the phytopathogen Phomopsis juniperovora Hahn. Phytochemistry 14:288–289

    Article  CAS  Google Scholar 

  • Whiteside JO (1993) Melanose. In: Whiteside JO, Garnsey SM, Timmer LW (eds) Compendium of citrus diseases. APS, The American Phytopathological Society, Minneapolis, pp 20–21

    Google Scholar 

  • Williams TH, Liu PSW (1976) A host list of plant diseases in Sabah, Malaysia. Phytopathol Pap 19:1–67

    Google Scholar 

  • Williamson PM, Highet AS, Gams W, Sivasithamparam K, Cowling WA (1994) Diaporthe toxica sp. nov., the cause of lupinosis in sheep. Mycol Res 98:1364–1368

    Article  Google Scholar 

  • Wood P (1986) Epidemiology of Phomopsis leptostromiformis. In: Proceedings of the Fourth International Lupin Conference, Geraldton, Australia, pp 220–229

  • Wood PM, Sivasithamparam K (1989) Diaporthe woodii (anamorph Phomopsis leptostromiformis)—a toxigenic fungus infecting cultivated lupins. Mycopathologia 105:79–86

    Article  Google Scholar 

  • Wood PM, Brown AG, Petterson DS (1973) Production of the lupinosis mycotoxin by Phomopsis rossiana. Aust J Exp Biol Med Sci 51:557–558

    Article  PubMed  CAS  Google Scholar 

  • Wu SH, Chen YW, Shao SC, Wang LD, Li ZY, Yang LY, Li SL, Huang R (2008) Ten-membered lactones from Phomopsis sp., an endophytic fungus of Azadirachta indica. J Nat Prod 71:731–734. doi:10.1021/np070624j

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 44:15–31. doi:10.1007/s13225-010-0055-z

    Article  Google Scholar 

  • Yang J, Xu F, Huang C, Li J, She Z, Pei Z, Lin Y (2010) Metabolites from the mangrove endophytic fungus Phomopsis sp. (#zsu-H76). Eur J Org Chem 19:3692–3695. doi:10.1002/ejoc.201000329

    Article  CAS  Google Scholar 

  • Yanna Ho WH, Hyde KD (2002) Fungal succession on fronds of Phoenix hanceana in Hong Kong. Fungal Divers 10:185–211

    Google Scholar 

  • Yin L, Hlsayoshi K, Yoshiyuki T, Yuichi H, Shigeo I (1992) Interaction of Phomopsin a with porcine brain tubulin: inhibition of tubulin polymerization and binding at a rhizoxin binding site. Biochem Pharmacol 43:219–224. doi:10.1016/0006-2952(92)90281-M

    Article  Google Scholar 

  • Yuan ZL, Dai CC, Li X, Tian LS, Wang XX (2007) Extensive host range of an endophytic fungus affects the growth and physiological functions in rice (Oryza sativa L.). Symbiosis 43:21–28

    Google Scholar 

  • Yuan G, Li Q, Wei J (2008) New species of Phomopsis on Zizyphus mauritians in Guangxi. Mycosystema 27:631–633

    Google Scholar 

  • Zhang AW, Hartman GL, Riccioni L, Chen WD, Ma RZ, Pedersen WL (1997) Using PCR to distinguish Diaporthe phaseolorum and Phomopsis longicolla from other soybean fungal pathogens and to detect them in soybean tissues. Plant Dis 81:1143–1149

    Article  CAS  Google Scholar 

  • Zhang AW, Riccioni L, Pedersen WL, Kollipara KP, Hartman GL (1998) Molecular identification and phylogenetic grouping of Diaporthe phaseolorum and Phomopsis longicolla isolates from soybean. Phytopathology 88:1306–1314

    Article  PubMed  CAS  Google Scholar 

  • Zhang AW, Hartman GL, Curio-Penny B, Pedersen WL, Becker KB (1999) Molecular detection of Diaporthe phaseolorum and Phomopsis longicolla from soybean seeds. Phytopathology 89:796–804

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Luo J, Zhuang WY (2011) Practice towards DNA barcoding of the nectriaceous fungi. Fungal Divers 46:183–191. doi:10.1007/s13225-010-0064-y

    Article  Google Scholar 

  • Zhigiang A (2005) Handbook of industrial mycology. Marcel Dekker, New York

    Google Scholar 

  • Zhuang WY (2001) Higher fungi of tropical China. Mycotaxon, Ithaca

    Google Scholar 

Download references

Acknowledgements

This project is supported by the Global Research Network for Fungal Biology, King Saud University and State Key Laboratory of Mycology, Institute of Microbiology, the latter by grant NSFC 30625001. Dhanushka Udayanga thanks the State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing and the Mushroom Research Foundation, Chiang Mai, Thailand for a postgraduate scholarship. Cai Lei (CAS, Beijing) is thanked for the suggestions to improve the manuscript. Pedro W. Crous (CBS Netherland), Hong-Bing Ma (Shandong Agricultural University, China), and Roger Shivas (Queensland plant pathology herbarium, Australia) are thanked for unpublished sequence information and type cultures. Belinda Rawnsley (South Australian Research and Development Institute: SARDI, Australia), Sam Markell (North Dakota State University, USA) and Thomas Chase (South Dakota University, USA) are thanked for allowing us to use the pictures provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Hyde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udayanga, D., Liu, X., McKenzie, E.H.C. et al. The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Diversity 50, 189–225 (2011). https://doi.org/10.1007/s13225-011-0126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-011-0126-9

Keywords

Navigation