Fungal Diversity

, 50:167 | Cite as

Pestalotiopsis—morphology, phylogeny, biochemistry and diversity

  • Sajeewa S. N. Maharachchikumbura
  • Liang-Dong Guo
  • Ekachai Chukeatirote
  • Ali H. Bahkali
  • Kevin D. Hyde


The genus Pestalotiopsis has received considerable attention in recent years, not only because of its role as a plant pathogen but also as a commonly isolated endophyte which has been shown to produce a wide range of chemically novel diverse metabolites. Classification in the genus has been previously based on morphology, with conidial characters being considered as important in distinguishing species and closely related genera. In this review, Pestalotia, Pestalotiopsis and some related genera are evaluated; it is concluded that the large number of described species has resulted from introductions based on host association. We suspect that many of these are probably not good biological species. Recent molecular data have shown that conidial characters can be used to distinguish taxa; however, host association and geographical location is less informative. The taxonomy of the genera complex remains confused. There are only a few type cultures and, therefore, it is impossible to use gene sequences in GenBank to clarify species names reliably. It has not even been established whether Pestalotia and Pestalotiopsis are distinct genera, as no isolates of the type species of Pestalotia have been sequenced, and they are morphologically somewhat similar. When selected GenBank ITS accessions of Pestalotiopsis clavispora, P. disseminata, P. microspora, P. neglecta, P. photiniae, P. theae, P. virgatula and P. vismiae are aligned, most species cluster throughout any phylogram generated. Since there appears to be no living type strain for any of these species, it is unwise to use GenBank sequences to represent any of these names. Type cultures and sequences are available for the recently described species P. hainanensis, P. jesteri, P. kunmingensis and P. pallidotheae. It is clear that the important species in Pestalotia and Pestalotiopsis need to be epitypified so that we can begin to understand the genus/genera. There are numerous reports in the literature that various species produce taxol, while others produce newly discovered compounds with medicinal potential and still others cause disease. The names assigned to these novel compound-producing taxa lack an accurate taxonomic basis, since the taxonomy of the genus is markedly confused. Until the important species have been epitypified with living strains that have been sequenced and deposited in public databases, researchers should refrain from providing the exact name of species.


Epitypify Host occurrence Pestalotia Pestalosphaeria Pigmentation Secondary metabolites Taxol 


  1. Agarwal AK, Chauhan S (1988) A new species of the genus Pestalotiopsis from Indian soil. Indian Phytopathol 41:625–627Google Scholar
  2. Agnihothrudu V (1964) A world list of fungi reported on tea. J Madras University 34:155–271Google Scholar
  3. Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic, USAGoogle Scholar
  4. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16Google Scholar
  5. Armstrong-Cho CL, Banniza S (2006) Glomerella truncata sp. nov., the teleomorph of Colletotrichum truncatum. Mycol Res 110:951–956PubMedGoogle Scholar
  6. Bajo J, Santamaria O, Diez J (2008) Cultural characteristics and pathogenicity of Pestalotiopsis funerea on Cupressus arizonica. For Pathol 38:263–274Google Scholar
  7. Barr ME (1975) Pestalosphaeria, a new genus in the Amphisphaeriaceae. Mycologia 67:187–194Google Scholar
  8. Barr ME (1990) Prodromus to nonlichenized, pyrenomycetous members of class Hymenoascomycetes. Mycotaxon 39:43–184Google Scholar
  9. Bate-Smith EC, Metcalfe CR (1957) Leucanthocyanins .3. The nature and systematic distribution of tannin in dicotyledonous plants. J Linn Soc (Bot) 55:669–705Google Scholar
  10. Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204Google Scholar
  11. Cannon PF, Kirk PM (2000) The philosophy and practicalities of amalgamating anamorph and teleomorph concepts. Stud Mycol 45:19–25Google Scholar
  12. Chaverri P, Castlebury LA, Overton BE, Samuels GJ (2003) Hypocrea/Trichoderma: species with conidiophore elongations and green conidia. Mycologia 95:1100–1140PubMedGoogle Scholar
  13. Chen YX, Wei G, Chen WP (2002) New species of Pestalotiopsis. Mycosystema 21:316–323Google Scholar
  14. Das Ranjana, Chutia M, Das K, Jha DK (2010) Factors affecting sporulation of Pestalotiopsis disseminata causing grey blight disease of Persea bombycina Kost., the primary food plant of muga silkworm. Crop Prot 29:963–968Google Scholar
  15. De Notaris G (1839) Micromycetes italiei Dec II. Mere R Acad Sci Torino II 3:80–81Google Scholar
  16. Dennis RWG (1995) Fungi of the South East England. Royal Botanic Gardens, KewGoogle Scholar
  17. Deyrup ST, Swenson DC, Gloer JB, Wicklow DT (2006) Caryophyllene sesquiterpenoids from a fungicolous isolate of Pestalotiopsis disseminata. J Nat Prod 69:608–611PubMedGoogle Scholar
  18. Diener UL, Wagener RE, Morgan-Jones G, Davis ND (1976) Toxigenic fungi from cotton. Phytopathology 66:514–516Google Scholar
  19. Ding G, Liu S, Guo L, Zhou Y, Che Y (2008a) Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod 71(4):615–618PubMedGoogle Scholar
  20. Ding G, Jiang L, Guo L, Chen X, Zhang H, Che Y (2008b) Pestalazines and pestalamides, bioactive metabolites from the plant pathogenic fungus Pestalotiopsis theae. J Nat Prod 71(11):1861–1865PubMedGoogle Scholar
  21. Ding G, Zheng Z, Liu S, Zheng H, Guo L, Che Y (2009) Photinides A-F, cytotoxic benzofuranone-derived γ-lactones from the plant endophytic fungus Pestalotiopsis photiniae. J Nat Prod 72:942–945PubMedGoogle Scholar
  22. Dodd SL, Lieckfeldt E, Samuels GJ (2003) Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia 95:27–40PubMedGoogle Scholar
  23. Douanla-Meli C, Langer E (2009) Pestalotiopsis theae (Ascomycota, Amphisphaeriaceae) on seeds of Diospyros crassiflora (Ebenaceae). Mycotaxon 107:441–448Google Scholar
  24. Dube HC, Bilgrami KS (1965) Variations in the conidial morphology of Pestalotiopsis darjeelingensis in culture. Curr Sci 34:487Google Scholar
  25. Egger KN (1995) Molecular analysis of ectomycorrhizal fungal communities. Can J Bot 73:1415–1422Google Scholar
  26. Elliott ML, Broschat TK, Uchida JY, Simone GW (eds) (2004) Diseases and disorders of ornamental palms. American Phytopathological Society, St. PaulGoogle Scholar
  27. Ellis MB, Ellis JP (1997) Microfungi on land plants: an identification handbook, 2nd edn (New Enlarged). The Richmond Publishing Co. LtdGoogle Scholar
  28. Espinoza JG, Briceno EX, Keith LM, Latorre BA (2008) Canker and Twig Dieback of blueberry caused by Pestalotiopsis spp. and a Truncatella sp. in Chile. Plant Dis 92:1407–1414Google Scholar
  29. Fail GL, Langenheim JH (1990) Infection process of Pestalotia subcuticularis on leaves of Hymenaea courbaril. Phytopathology 80:1259–1265Google Scholar
  30. Gangadevi V, Murugan M, Muthumary J (2008) Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant. Chin J Biotechnol 24(8):1433–1438Google Scholar
  31. Gehlot P, Bohra NK, Purohit DK (2008) Endophytic mycoflora of inner bark of Prosopis cineraria—a key stone tree species of Indian desert. Am-Eur J Bot 1(1):01–04Google Scholar
  32. Gomes-Figueiredo J, Pimentel IC, Vicente VA, Pie MR, Kava-Cordeiro V, Galli-Terasawa L, Pereira JO, de Souza AQ, Glienke C (2007) Bioprospecting highly diverse endophytic Pestalotiopsis spp. with antibacterial properties from Maytenus ilicifolia, a medicinal plant from Brazil. Can J Microbiol 53(10):1123–1132PubMedGoogle Scholar
  33. Griffiths DA, Swart HJ (1974a) Conidial structure in two species of Pestalotiopsis. Trans Br Mycol Soc 62:295–304Google Scholar
  34. Griffiths DA, Swart HJ (1974b) Conidial structure in Pestalotia pezizoides. Trans Br Mycol Soc 63:169–173Google Scholar
  35. Guba EF (1956) Monochaetia and Pestalotia vs. Truncatella, Pestalotiopsis and Pestalotia. Ann Microb Enzymol Milan 7:74–76Google Scholar
  36. Guba EF (1961) Monograph of Pestalotia and Monochaetia. Harvard University Press, CambridgeGoogle Scholar
  37. Halfeld-Vieira BA, Nechet KA (2006) First report of Pestalotiopsis macrochaeta on Carapa guianensis. Plant Pathol 55:304Google Scholar
  38. Harper JK, Barich DH, Hu JZ, Strobel GA, Grant DM (2003) Stereochemical analysis by solid-state NMR: structural predictions in ambuic acid. J Org Chem 68:4609–4614PubMedGoogle Scholar
  39. Hopkins KE, McQuilken MP (1997) Pestalotiopsis on nursery stock, in HDC Project News No 39. Horticultural Development Council, East MallingGoogle Scholar
  40. Hopkins KE, McQuilken MP (2000) Characteristics of Pestalotiopsis associated with hardy ornamental plants in the UK. Eur J Plant Pathol 106:77–85Google Scholar
  41. Horikawa T (1986) Yield loss of new tea shoots due to grey blight caused by Pestalotia longiseta Spegazzini. Bull Shizuoka Tea Exp Stn 12:1–8Google Scholar
  42. Hu HL, Jeewon R, Zhou DQ, Zhou TX, Hyde KD (2007) Phylogenetic diversity of endophytic Pestalotiopsis species in Pinus armandii and Ribes spp.: evidence from rDNA and β-tubulin gene phylogenies. Fungal Divers 24:1–22Google Scholar
  43. Hyde KD (1996) Fungi from palms. XXV. Pestalosphaeria elaeidis. Mycotaxon 57:353–357Google Scholar
  44. Hyde KD, Fröhlich J (1995) Mycosphaerella palmicola associated with leaf spots of Cocos nucifera in Australia Iran Jaya and Papua New Guinea. Mycol Res 99:704–706Google Scholar
  45. Hyde KD, Zhang Y (2008) Epitypification: should we epitypify?. Journal of Zhejiang University Science B 9:842–846.Google Scholar
  46. Hyde KD, McKenzie EHC, KoKo TW (2011) Towards incorporating anamorphic fungi in a natural classification—checklist and notes for 2010. Mycosphere 2(1):1–88Google Scholar
  47. Jeewon R, Liew ECY, Hyde KD (2002) Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters. Mol Phylogenet Evol 25:378–392PubMedGoogle Scholar
  48. Jeewon R, Liew ECY, Simpson JA, Hodgkiss IJ, Hyde KD (2003) Phylogenetic significance of morphological characters in the taxonomy of Pestalotiopsis species. Mol Phylogenet Evol 27:372–383PubMedGoogle Scholar
  49. Jeewon R, Liew ECY, Hyde KD (2004) Phylogenetic evaluation of species nomenclature of Pestalotiopsis in relation to host association. Fungal Divers 17:39–55Google Scholar
  50. Jeon YH, Kim SG, Kim YH (2007) First report on leaf blight of Lindera obtusiloba caused by Pestalotiopsis microspora in Korea. Plant Pathol 56:349Google Scholar
  51. Joshi SD, Sanjay R, Baby UI, Mandal AKA (2009) Molecular characterization of Pestalotiopsis spp. associated with tea (Camellia sinensis) in southern India using RAPD and ISSR markers. Indian J Biotechnol 8(4):377–383Google Scholar
  52. Kai A, Kikawa M, Hatanaka K, Matsuzaki K, Mimura T, Kaneko Y (2003) Biosynthesis of hetero-polysaccharides by Pestalotiopsis microspora from various monosaccharides as carbon source. Carbohydr Polym 54:381–383Google Scholar
  53. Kang JC, Kong RYC, Hyde KD (1998) Studies on the Amphisphaeriales I. Amphisphaeriaceae (sensu stricto) and its phylogenetic relationships inferred from 5.8S rDNA and ITS2 sequences. Fungal Divers 1:147–157Google Scholar
  54. Kang JC, Hyde KD, Kong RYC (1999) Studies on the Amphisphaeriales. The Amphisphaeriaceae (sensu stricto). Mycol Res 103:53–64Google Scholar
  55. Karaca GH, Erper I (2001) First report of Pestalotiopsis guepinii causing twig blight on hazelnut and walnut in Turkey. Plant Pathol 50:415Google Scholar
  56. Kaushik CD, Thakur DP, Chand JN (1972) Parasitism and control of Pestalotia psidii causing cankerous disease of ripe guava fruits. Indian Phytopathol 25:61–64Google Scholar
  57. Keith LM, Zee FT (2010) Guava disease in Hawaii and the characterization of Pestalotiopsis spp. affecting guava. Acta Horticulturae (ISHS) 849:269–276Google Scholar
  58. Keith LM, Velasquez ME, Zee FT (2006) Identification and characterization of Pestalotiopsis spp. causing scab disease of guava, Psidium guajava in Hawaii. Plant Dis 90:16–23Google Scholar
  59. Kendrick B (ed) (1979) The whole fungus: the sexual-asexual synthesis. Volume 1–2. National Museums of Canada, OttawaGoogle Scholar
  60. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, WallingfordGoogle Scholar
  61. Klebahn H (1914) Beitrage zur Kenntnis der Fungi Imperfecti. Zur Kritik einiger Pestalozzia-Arten. Mykol Zbl 4:1–19Google Scholar
  62. Kobayashi T, Ishihara M, Ono Y (2001) A new species of Pestalosphaeria, the telomorph of Pestalotiopsis neglecta. Mycoscience 42:211–216Google Scholar
  63. Kohlmeyer J, Kohlmeyer VB (2001) Fungi on Juncus roemerianus 16. More new coelomycetes, including Tetranacriella gen. nov. Bot Mar 44:147–156Google Scholar
  64. Korsten L, De Jager ES, De Villers EE, Lourens A, Kotze JM, Wehner FC (1995) Evaluation of bacterial epiphytes isolated from avocado leaf and fruit surfaces for biocontrol of avocado postharvest diseases. Plant Dis 79:1149Google Scholar
  65. Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers 17:69–90Google Scholar
  66. Kwee LT, Chong KK (1990) Guava in Malaysia: production, pests and diseases. Tropical Press SDN. BHD, Kuala LumpurGoogle Scholar
  67. Kwon GS, Moon SH, Hong SD, Lee HM, Kim HS, Oh HM, Yoon BD (1996) A novel flocculant biopolymer produced by Pestalotiopsis sp. KCTC 8637P. Biotechnol Lett 18(12):1459–1464Google Scholar
  68. Lee JC, Yang X, Schwartz M, Strobel G, Clardy J (1995) The relationship between an endangered North American tree and an endophytic fungus. Chem Biol 2:721–727PubMedGoogle Scholar
  69. Lee JC, Strobel GA, Lobkovsky E, Clardy JC (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233Google Scholar
  70. Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomycetcyclohexenenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57:261–265PubMedGoogle Scholar
  71. Li JY, Strobel GA, Sidhu RS, Hess WM, Ford EJ (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 142:2223–2226PubMedGoogle Scholar
  72. Li E, Tian R, Liu S, Chen X, Guo L, Che Y (2008a) Pestalotheols A–D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J Nat Prod 71(4):664–668PubMedGoogle Scholar
  73. Li E, Jiang L, Guo L, Zhang H, Che Y (2008b) Pestalachlorides A–C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894–7899PubMedGoogle Scholar
  74. Liu AR, Wu XP, Xu T, Guo LD, Wei JG (2006) Notes on endophytic Pestalotiopsis from Hainan, China. Mycosystema 25:389–397Google Scholar
  75. Liu AR, Xu T, Guo LD (2007) Molecular and morphological description of Pestalotiopsis hainanensis sp. nov., a new endophyte from a tropical region of China. Fungal Divers 24:23–36Google Scholar
  76. Liu L, Liu S, Jiang L, Chen X, Guo L, Che Y (2008a) Chloropupukeananin, the first chlorinated pupukeanane derivative, and its precursors from Pestalotiopsis fici. Org Lett 10:1397–1400PubMedGoogle Scholar
  77. Liu L, Tian RR, Liu SC, Chen XL, Guo LD, Che YS (2008b) Pestaloficiols A–E, bioactive cyclopropane derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 16:6021–6026PubMedGoogle Scholar
  78. Liu L, Li Y, Liu SC, Zheng ZH, Chen XL, Zhang H, Guo LD, Che YS (2009) Chloropestolide A, an antitumor metabolite with an unprecedented spiroketal skeleton from Pestalotiopsis fici. Org Lett 11:2836–2839PubMedGoogle Scholar
  79. Liu AR, Chen SC, Wu SY, Xu T, Guo LD, Jeewon R, Wei JG (2010a) Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy. Mol Phylogenet Evol 57:528–535PubMedGoogle Scholar
  80. Liu L, Niu S, Lu X, Chen X, Zhang H, Guo L, Che Y (2010b) Unique metabolites of Pestalotiopsis fici suggest a biosynthetic hypothesis involving a Diels-Alder reaction and then mechanistic diversification. Chem Comm 46:460–462PubMedGoogle Scholar
  81. Long DM, Smidansky ED, Archer A, Strobel GA (1998) In vivo addition of telomeric repeats to foreign DNA generates extrachromosomal DNAs in the taxol-producing fungus Pestalotiopsis microspora. Fungal Genet Biol 24:335–344PubMedGoogle Scholar
  82. Madar Z, Solel Z, Kimchi M (1991) Pestalotiopsis canker of Cypress in Israel. Phytoparasitica 19(1):79–81Google Scholar
  83. McQuilken MP, Hopkins KE (2004) Biology and integrated control of Pestalotiopsis on container-grown ericaceous crops. Pest Manag Sci 60:135–142PubMedGoogle Scholar
  84. Metz AM, Haddad A, Worapong J, Long DM, Ford EJ, Hess WM, Strobel GA (2000) Induction of the sexual stage of Pestalotiopsis microspora, a taxol-producing fungus. Microbiology 146:2079–2089PubMedGoogle Scholar
  85. Moreau C (1949) Micomycetes africains. I. Rev Mycol, Suppl Colon (Paris) 14:15–22Google Scholar
  86. Muraleedharan N, Chen ZM (1997) Pests and diseases of tea and their management. J Plant Crop 25:15–43Google Scholar
  87. Nag Rag TR (1993) Coelomycetous anamorphs with appendage bearing conidia. Mycologue, WaterlooGoogle Scholar
  88. Nag Raj TR (1985) Redisposals and redescriptions in the Monochaetia.Seiridium, PestalotiaPestalotiopsis complexes. II. Pestalotiopsis besseyii (Guba) comb. nov. and Pestalosphaeria varia sp. nov. Mycotaxon 22:52–63Google Scholar
  89. Nagata T, Ando Y (1989) Oxysporone, a phytotoxin isolated from the tea gray blight fungus Pestalotia longiseta. Agric Biol Chem 53:2811Google Scholar
  90. Nagata T, Ando Y, Hirota A (1992) Phytotoxins from tea gray blight fungi, Pestalotiopsis longiseta and Pestalotiopsis theae. Biosci Biotechnol Biochem 56:810–811Google Scholar
  91. Okane I, Nagagiri A, Ito T (1998) Endophytic fungi in leaves of ericaceous plants. Can J Bot 76:657–663Google Scholar
  92. Osono T, Takeda H (1999) Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. Eur J Soil Biol 35:51–56Google Scholar
  93. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  94. Pal AK, Purkayastha RP (1992) New parasitic fungi from Indian mangrove. J Mycopathol Res 30:173–176Google Scholar
  95. Pandey RR (1990) Mycoflora associated with floral parts of guava (Psidium guajava L.). Acta Bot Sin 18:59–63Google Scholar
  96. Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AF, Sutherland JB (2001) The fungus Pestalotiopsis guepinii as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477PubMedGoogle Scholar
  97. Petrak VF (1947) Neobroomella n. gen., eine neue Gattung der Sphaeriales. Sydowia 1(1–3):5Google Scholar
  98. Pirone PP (1978) Diseases and pests of ornamental plants. Wiley Interscience, New YorkGoogle Scholar
  99. Purohit DK, Bilgrami KS (1969) Variations in the conidial morphology of genus Pestalotiopsis. Indian Phytopathology 22:275–279Google Scholar
  100. Reynolds DR (1993) The fungal holomorph: an overview. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Oxon, pp 15–25Google Scholar
  101. Rivera MC, Wright ER (2000) First report of azalea petal blight caused by Pestalotiopsis guepinii in Argentina. Plant Dis 84:100Google Scholar
  102. Rodrigues KF, Costa GL, Carvalho MP, Epifanio RA (2005) Evaluation of extracts produced by some tropical fungi as potential cholinesterase inhibitors. World J Microbiol Biotechnol 21:1617–1621Google Scholar
  103. Sangchote S, Farungsang U, Farungsang N (1998) Pre and postharvest infection of rambutan by pathogens and effect on postharvest treatments. In: Coates LM, Hofman PJ, Johnson GI (eds) Disease control and storage life extension in fruits. Proceeding of an international workshop held at Chaing Mai, Thailand May 22–23, 1997. ACIAR Proceeding No. 81: 87–91Google Scholar
  104. Sanjay R, Ponmurugan P, Baby UI (2008) Evaluation of fungicides and biocontrol agents against grey blight disease of tea in the field. Crop Prot 27:689–694Google Scholar
  105. Sati SC, Belwal M (2005) Aquatic hyphomycetes as endophytes of riparian plant roots. Mycologia 97:45–49PubMedGoogle Scholar
  106. Satya HN, Saksena SB (1984) Some aspects of taxonomy of the genus Pestalotia I-Color intensities of intermediate cells of spores. In: Subramanian CV (ed) Proceedings of the International Symposium on Taxonomy of FungiGoogle Scholar
  107. Schwendener S (1868) Ueber die Beziehungen zwischen Algen und Flechtengonidien. Bot Zeitung 26:289–292Google Scholar
  108. Servazzi O (1953) Nuovo Giorn. Bot. Ital. 60 (n.s.) 4:943–947Google Scholar
  109. Shearer CA, Raja HA, Schmit JP (2007) Freshwater ascomycetes and their anamorphs—website available online at
  110. Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Divers 26:1–54Google Scholar
  111. Shimada A, Takahashi I, Kawano T, Kimura YZ (2001) Chloroisosulochrin, chloroisosulochrin dehydrate, and pestheic acid, plant growth regulators, produced by Pestalotiopsis theae. J Biosci (Z Naturforsch) 56b:797–803Google Scholar
  112. Singh NI (1981) Some new host records for India. Indian Phytopathology 34:233–234Google Scholar
  113. Sousa MF, Tavares RM, Gerós H, Lino-Neto T (2004) First report of Hakea sericea leaf infection caused by Pestalotiopsis funerea in Portugal. Plant Pathol 53:535Google Scholar
  114. Srinivasan K, Muthumary J (2009) Taxol production from Pestalotiopsis sp an endophytic fungus isolated from Catharanthus roseus. J Ecobiotechnology 1(1):28–31Google Scholar
  115. Steyaert RL (1949) Contributions à l’étude monographique de Pestalotia de Not. et Monochaetia Sacc. (Truncatella gen. nov. et Pestalotiopsis gen. nov.). Bull. Jard. Bot. Bruxelles 19:285–354Google Scholar
  116. Steyaert RL (1953a) New and old species of Pestalotiopsis. Trans Br Mycol Soc 36:81–89Google Scholar
  117. Steyaert RL (1953b) Pestalotiopsis from the Gold Coast and Togoland. Trans Br Mycol Soc 36:235–242Google Scholar
  118. Steyaert RL (1955) Pestalotia, Pestalotiopsis et Truncatella. Bull. Jard. Bot. Bruxelles 25:191–199Google Scholar
  119. Steyaert RL (1956) A reply and an appeal to Professor Guba. Mycologia 48:767–768Google Scholar
  120. Steyaert RL (1961) Type specimens of Spegazzini’s collections in the Pestalotiopsis and related genera (Fungi Imperfecti: Melanconiales). Darwinia (Buenos Aires) 12:157–190Google Scholar
  121. Strobel GA, Long DM (1998) Endophytic microbes embody pharmaceutical potential. Am Soc Microbiol News 64:263–268Google Scholar
  122. Strobel G, Yang XS, Sears J, Kramer R, Sidhu RS, Hess WM (1996a) Taxol from Pestalotiopsis microspora of Taxus wallachiana. Microbiology 142:435–440PubMedGoogle Scholar
  123. Strobel GA, Hess WM, Ford EJ, Siduhu RS, Yang XJ (1996b) Taxol from fungal endophytes and the issue of biodiversity. Indian Microbiol 17:417–423Google Scholar
  124. Strobel G, Li JY, Ford E, Worapong J, Gary IB, Hess WM (2000) Pestalotiopsis jesteri, sp. nov. an endophyte from Fragraea bodenii Wernh, a common plant in the southern highlands of Papua New Guinea. Mycotaxon 76:257–266Google Scholar
  125. Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC, Chau MW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183PubMedGoogle Scholar
  126. Sun HJ, Depriest PT, Gargas A, Rossman AY, Friedmann EI (2002) Pestalotiopsis maculans: a dominant parasymbiont in North American lichens. Symbiosis 33:215–226Google Scholar
  127. Sutton BC (1961) Coelomycetes. I. Mycol. Pap. 80:1–16Google Scholar
  128. Sutton BC (1980) The coelomycetes: fungi imperfecti with pycnidia, acervular and stromata. Commonwealth Mycological Institute, KewGoogle Scholar
  129. Sutton DA (1999) Coelomycetous fungi in human disease. A review: clinical entities, pathogenesis, identification and therapy. Rev Iberoam Mycol 16:171–179Google Scholar
  130. Swofford DL (2002) PAUP* 4.0: phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, SunderlandGoogle Scholar
  131. Tagne A, Mathur SB (2001) First report of chlorotic spot of maize caused by Pestalotiopsis neglecta. Plant Pathol 50:791Google Scholar
  132. Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W and A. (Combretaceae). World J Microbiol Biotechnol 21:1535–1540Google Scholar
  133. Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007a) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54Google Scholar
  134. Tejesvi MV, Nalini MS, Mahesh B, Prakash HS, Kini KR, Shetty HS, Subbiah V (2007b) New hopes from endophytic fungal secondary metabolites. Bol Soc Quím de Méx 1(1):19–26Google Scholar
  135. Tejesvi MV, Tamhankar SA, Kini KR, Rao VS, Prakash HS (2009) Phylogenetic analysis of endophytic Pestalotiopsis species from ethnopharmaceutically important medicinal trees. Fungal Divers 38:167–183Google Scholar
  136. Thongkantha S, Lumyong S, McKenzie EHC, Hyde KD (2008) Fungal saprobes and pathogens occurring on tissues of Dracaena lourieri and Pandanus spp. in Thailand. Fungal Divers 30:149–169Google Scholar
  137. Tokumasu S, Aoiki T (2002) A new approach to studying microfungal succession on decaying pine needles in an oceanic subtropical region in Japan. Fungal Divers 10:167–183Google Scholar
  138. Tuset JJ, Hinarejos C, Mira JL (1999) First report of leaf blight on sweet persimmon tree by Pestalotiopsis theae in Spain. Plant Dis 83:1070Google Scholar
  139. Ullasa BA, Rawal RD (1989) Occurrence of a new post-harvest disease of mango due to Pestalotiopsis glandicola. Acta Horticulturae (ISHS) 231:540–543Google Scholar
  140. Venkatasubbaiah P, Grand LF, Dyke CGV (1991) A new species of Pestalotiopsis on Oenothera. Mycologia 83(4):511–513Google Scholar
  141. Vitale A, Polizzi G (2005) Occurrence of Pestalotiopsis uvicola causing leaf spots and stem blight on bay laurel (Laurus nobilis) in Sicily. Plant Dis 89(12):1362Google Scholar
  142. Von Arx JA (1974) The genera of fungi sporulating in pure culture. In: Cramer J (ed) The genera of fungi sporulating in pure culture. A. R.Gantner Veriag Kommanditgesellschaft, VaduzGoogle Scholar
  143. Watanabe K, Doi Y, Kobayashi T (1998) Conidiomatal development of Pestalotiopsis guepinii and P. neglecta on leaves of Gardenia jasminoides. Mycoscience 39:71–75Google Scholar
  144. Watanabe K, Parbery DG, Kobayashi T, Doi Y (2000) Conidial adhesion and germination of Pestalotiopsis neglecta. Mycol Res 104(8):962–968Google Scholar
  145. Watanabe K, Motohashi K, Ono Y (2010) Description of Pestalotiopsis pallidotheae: a new species from Japan. Mycoscience 51:182–188Google Scholar
  146. Wei JG, Xu T (2004) Pestalotiopsis kunmingensis, sp. nov., an endophyte from Podocarpus macrophyllus. Fungal Divers 15:247–254Google Scholar
  147. Wei JG, Xu T, Guo LD, Pan XH (2005) Endophytic Pestalotiopsis species from southern China. Mycosystema 24:481–493Google Scholar
  148. Wei JG, Xu T, Guo LD, Liu AR, Zhang Y, Pan XH (2007) Endophytic Pestalotiopsis species associated with plants of Podocarpaceae, Theaceae and Taxaceae in southern China. Fungal Divers 24:55–74Google Scholar
  149. Womersley JS (1995) Handbooks of the flora of Papua New Guinea. Melbourne University Press, MelbourneGoogle Scholar
  150. Worapong J, Inthararaungsom S, Stroble GA, Hess WM (2003) A new record of Pestalotiopsis theae, existing as an endophyte on Cinnamomum iners in Thailand. Mycotaxon 88:365–372Google Scholar
  151. Wright ER, Rivera MC, Flynn MJ (1998) First report of Pestalotiopsis guepinii and Glomerella cingulata on blueberry in Buenos Aires (Argentina). Boletín 28:219–220Google Scholar
  152. Wu CG, Tseng HY, Chen ZC (1982) Fungi inhabiting on Schoenoplectus triqueter (L.) Palla (I). Taiwania 27:35–38Google Scholar
  153. Wulandari NF, To-anun C, Hyde KD, Duong LM, de Gruyter J, Meffert JP, Groenewald JZ, Crous PW (2009) Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Divers 34:23–39Google Scholar
  154. Xu L, Kusakari S, Hosomi A, Toyoda H, Ouchi A (1999) Postharvest disease of grape caused by Pestalotiopsis species. Ann Phytopathol Soc Jpn 65:305–311Google Scholar
  155. Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 44(1):15–31Google Scholar
  156. Yanna, Ho WH, Hyde KD (2002) Fungal succession on fronds of Phoenix hanceana in Hong Kong. Fungal Divers 10:185–211Google Scholar
  157. Yasuda F, Kobayashi T, Watanabe H, Izawa H (2003) Addition of Pestalotiopsis spp. to leaf spot pathogens of Japanese persimmon. J Gen Plant Pathol 69:29–32Google Scholar
  158. Zhang YL, Ge HM, Li F, Song YC, Tan RX (2008) New phytotoxic metabolites from Pestalotiopsis sp. HC02, a fungus residing in chondracris rosee gut. Chem Biodivers 5(11):2402–2407PubMedGoogle Scholar
  159. Zhu PL (1989) Study on identification and taxonomy of Pestalotiopsis spp. from common ornamental plants. Ms. Thesis. Zhejiang Agricultural University, ChinaGoogle Scholar
  160. Zhu P, Ge Q, Xu T (1991) The perfect stage of Pestalosphaeria from China. Mycotaxon 40:129–140Google Scholar

Copyright information

© Kevin D. Hyde 2011

Authors and Affiliations

  • Sajeewa S. N. Maharachchikumbura
    • 1
    • 2
  • Liang-Dong Guo
    • 1
  • Ekachai Chukeatirote
    • 2
  • Ali H. Bahkali
    • 3
  • Kevin D. Hyde
    • 2
    • 3
  1. 1.Key Laboratory of Systematic Mycology & Lichenology, Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.School of ScienceMae Fah Luang UniversityChiang RaiThailand
  3. 3.College of Science, Botany and Microbiology DepartmentKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations