Skip to main content

Fifty years of drug discovery from fungi

Abstract

For the past 50 years, fungal secondary metabolites have revolutionized medicine yielding blockbuster drugs and drug leads of enormous therapeutic and agricultural potential. Since the discovery of penicillin, the first β-lactam antibiotic, fungi provided modern medicine with important antibiotics for curing life threatening infectious diseases. A new era in immunopharmacology and organ transplantation began with the discovery of cyclosporine. Other important drugs or products for agriculture derived from or inspired by natural products from fungi include statins, echinocandins and strobilurins. Moreover, fungal biotransformation of steroids for the industrial production of steroidal hormones represents one of the key successes in biotechnology. Given that estimations of fungal biodiversity exceed by far the number of already identified species, chances to find hitherto unidentified fungal species and novel bioactive fungal products are still high. Thus, further compounds with medicinal or agricultural potential from less investigated fungal taxa can be expected in the years to come.

This is a preview of subscription content, access via your institution.

References

  • Abraham E (1990) Selective reminiscences of beta-lactam antibiotics: early research on penicillin and cephalosporins. Bioessays 12:601–606

    PubMed  CAS  Google Scholar 

  • Abraham EP, Chain E, Fletcher CM, Gardner AD, Heatley NG, Jennings MA, Florey HW (1941) Further observations on penicillin. Lancet 238:177–189

    Google Scholar 

  • Ago H, Oda M, Takahashi M, Tsuge H, Ochi S, Katunuma N, Miyano M, Sakurai J (2006) Structural basis of the sphingomyelin phosphodiesterase activity in neutral sphingomyelinase from Bacillus cereus. J Biol Chem 281:16157–16167

    PubMed  CAS  Google Scholar 

  • Ahmed F, Williams RA, Smith KE (1996) Microbial transformations of steroids—X. Cytochromes P-450 11 alpha-hydroxylase and C17-C20 lyase and a 1-ene dehydrogenase transform steroids in Nectria haematococca. J Steroid Biochem Mol Biol 58:337–349

    PubMed  CAS  Google Scholar 

  • Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36:697–705

    PubMed  Google Scholar 

  • Alberts AW (1988) Discovery, biochemistry and biology of lovastatin. Am J Cardiol 62:10J–15J

    PubMed  CAS  Google Scholar 

  • Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a high potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77:3957–3961

    PubMed  CAS  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Google Scholar 

  • Ammermann E, Lorenz G, Schelberger K, Wenderoth B, Sauter H, Rentzea C (1992) Brighton Crop Prot Conf: pests and diseases. British Crop Protection Council, Farnham, p 403

    Google Scholar 

  • Ammermann E, Lorenz G, Schelberger K, Mueller B, Kirstgen R, Sauter H (2000) BAS 500 F—the new broad-spectrum strobilurin fungicide. In: Proc Brighton Crop Protect Conf: Pests and Diseases. British Crop Protection Council, Farnham, UK, pp 541–548

  • Anderson JD (1980) Fusidic acid: new opportunities with an old antibiotic. Can Med Assoc J 122:765–769

    PubMed  CAS  Google Scholar 

  • Anke T (1995) The antifungal strobilurins and their possible ecological role. Can J Bot 73:S940–S945

    CAS  Google Scholar 

  • Anke T, Thines E (2007) Fungal metabolites as lead structures for agriculture. In: Robson GD, Van West P, Gadd GM (eds) Exploitation of fungi. Cambridge University Press, Cambridge, pp 45–58

    Google Scholar 

  • Anke T, Oberwinkler F, Steglich W, Schramm G (1977) The strobilurins—new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. J Antibiot 30:806–810

    PubMed  CAS  Google Scholar 

  • Anke T, Hecht HJ, Schramm G, Steglich W (1979) Antibiotics from basidiornycetes. IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida (Schrader ex Fr.) Hoehnel (Agaricales). J Antibiot 32:1112–1117

    PubMed  CAS  Google Scholar 

  • Anke T, Besl H, Mocek U, Steglich W (1983) Antibiotics from basidiomycetes. XVIII. Strobilurin C and oudemansin B, two new antifungal metabolites from Xerula species (Agaricales). J Antibiot 36:661–666

    PubMed  CAS  Google Scholar 

  • Appel J, Felsenstein FG (2000) Entwicklung der Strobilurinresistenz des Weizenmehltaus in Europa in den Jahren 1998 bis 2000. Mitt Biol Bundesanst 376:97

    Google Scholar 

  • Barry AL, Jones RN (1987) In vitro activity of ciprofloxacin against gram-positive cocci. Am J Med 82:27–32

    PubMed  CAS  Google Scholar 

  • Bartett DW, Clough JM, Godfrey CRA, Godwin JR, Hall AA, Heaney SP, Maund SJ (2001) Understanding the strobilurin fungicides. Pestic Outlook 12:143–148

    CAS  Google Scholar 

  • Beautement K, Clough JM (1987) Stereocontrolled syntheses of strobilurin A and its (9E)-isomer. Tetrahedron Lett 28:475–478

    CAS  Google Scholar 

  • Becker WF, von Jagow G, Anke T, Steglich W (1981) Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of the bc1 segment of the respiratory chain with an E-beta-methoxyacrylate system as common structural element. FEBS Lett 132:329–333

    PubMed  CAS  Google Scholar 

  • Bergstralh DT, Ting JP (2006) Microtubule stabilizing agents: their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat Rev 32:166–179

    PubMed  CAS  Google Scholar 

  • Black WA, McNellis DA (1971) Comparative in-vitro sensitivity of Nocardia species to fusidic acid and sulphonamides. J Med Microbiol 4:293–295

    PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep. doi:10.1039/C005001F

  • Borel JF, Kis ZL (1991) The discovery and development of cyclosporine. Transplant Proc 23:1867–1874

    PubMed  CAS  Google Scholar 

  • Borges KB, Borges WDS, Pupo MT, Bonato PS (2007) Endophytic fungi as models for the stereoselective biotransformation of thioridazine. Appl Microbiol Biotechnol 77:669–674

    PubMed  CAS  Google Scholar 

  • Bortolini O, Medici A, Poli S (1997) Biotransformations of the steroid nucleus of bile acids. Steroids 62:564–577

    PubMed  CAS  Google Scholar 

  • Brian PW (1949) Studies on the biological activity of griseofulvin. Ann Bot 13:59–77

    CAS  Google Scholar 

  • Buckland B, Gbewonyo K, Hallada T, Kaplan L, Masurekar P (1989) Production of lovastatin, an inhibitor of cholesterol accumulation in humans. In: Demain AL, Somkuti GA, Hunter-Cevera JC, Rossmore HW (eds) Novel microbial product for medicine and agriculture. Elsevier, Amsterdam, pp 161–169

    Google Scholar 

  • Bush K, Jacoby G (1997) Nomenclature of TEM β-lactamases. J Antimicrob Chemother 39:1–3

    PubMed  CAS  Google Scholar 

  • Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153

    PubMed  CAS  Google Scholar 

  • Chadwick AJ, Jackson B (1969) Intraocular penetration of the antibiotic fucidin. Br J Ophthalmol 53:26–29

    PubMed  CAS  Google Scholar 

  • Chen SCA, Slavin MA, Sorrell TC (2011) Echinocandin antifungal drugs in fungal infections: a comparison. Drugs 71:11–41

    PubMed  CAS  Google Scholar 

  • Clough JM (2000) The strobilurin fungicides—from mushroom to molecule to market. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: new leads for the pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, pp 277–282

    Google Scholar 

  • Conder GA, Johnson SS, Nowakowski DS, Blake TE, Dutton FE, Nelson SJ, Thomas EM, Davis JP, Thompson DP (1995) Anthelmintic profile of the cyclodepsipeptide PF1022A in in vitro and in vivo models. J Antibiot 48:820–823

    PubMed  CAS  Google Scholar 

  • Crabtree GR (1999) Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell 96:611–614

    PubMed  CAS  Google Scholar 

  • Crosbie RB (1963) Treatment of staphylococcal infections with “fucidin”. Br Med J 1:788–794

    PubMed  CAS  Google Scholar 

  • Cundliffe E (1972) The mode of action of fusidic acid. Biochem Biophys Res Commun 46:1794–1801

    PubMed  CAS  Google Scholar 

  • Czarny M, Schnitzer JE (2004) Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol 287:H1344–H1352

    PubMed  CAS  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    PubMed  CAS  Google Scholar 

  • Demain AL (2000) Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18:499–514

    PubMed  CAS  Google Scholar 

  • Demain AL, Elander RP (1999) The β-lactam antibiotics: past, present, and future. Antonie Leeuwenhoek 75:5–19

    PubMed  CAS  Google Scholar 

  • Denning DW (1997) Echinocandins and pneumocandins—a new antifungal class with a novel mode of action. J Antimicrob Chemother 40:611–614

    PubMed  CAS  Google Scholar 

  • Dewick PM (2006) Medicinal natural products. A biosynthetic approach. Wiley, Baffins Lane

    Google Scholar 

  • Dornetshuber R, Kamyar MR, Rawnduzi P, Baburin I, Kouri K, Pilz E, Hornbogen T, Zocher R, Berger W, Lemmens-Gruber R (2009) Effects of the anthelmintic drug PF1022A on mammalian tissue and cells. Biochem Pharmacol 77:1437–1444

    PubMed  CAS  Google Scholar 

  • Dowson CG, Hutchison A, Brannigan JA, George RC, Hansman D, Liñares J, Tomasz A, Smith JM, Spratt BG (1989) Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc Natl Acad Sci USA 86:8842–8846

    PubMed  CAS  Google Scholar 

  • Elander RP (2003) Industrial production of β-lactam antibiotics. Appl Microbiol Biotechnol 61:385–392

    PubMed  CAS  Google Scholar 

  • El-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T (1998) Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 49:1651–1657

    PubMed  CAS  Google Scholar 

  • Elrod J, Wong R, Mishra S, Vagnozzi RJ, Sakthievel B, Goonasekera SA, Karch J, Gabel S, Farber J, Force T, Brown JH, Murphy E, Molkentin JD (2010) Cyclophilin D controls mitochondrial pore-dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest 120:3680–3687

    PubMed  CAS  Google Scholar 

  • Endo A, Kuroda M, Tsujita Y (1976) ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot 29:1346–1348

    PubMed  CAS  Google Scholar 

  • Faber M, Rosdahl VT (1990) Susceptibility to fusidic acid among Danish Staphylococcus aureus strains and fusidic acid consumption. J Antimicrob Chemother 25:7–14

    PubMed  CAS  Google Scholar 

  • Falagas ME, Grammatikos AP, Michalopoulos A (2008) Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther 6:593–600

    PubMed  Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32:688–705

    CAS  Google Scholar 

  • Fleming A (1980) Classics in infectious diseases: on the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10: 226–236, 1929. Rev Infect Dis 2:129–139

    PubMed  CAS  Google Scholar 

  • Fredenhagen A, Kuhn A, Peter HH, Cuomo V, Giuliano U (1990) Strobilurins F, G and H, three new antifungal metabolites from Bolinea lutea. I. Fermentation, isolation and biological activity. J Antibiot 43:655–660

    PubMed  CAS  Google Scholar 

  • Furberg CD (1999) Natural statins and stroke risk. Circulation 99:185–188

    PubMed  CAS  Google Scholar 

  • Ganong WF (2005) Review of medical physiology, 22nd edn. Lange Medical Books, pp 530

  • Godtfredsen W, Roholt K, Tybring L (1962a) Fucidin. A new orally active antibiotic. Lancet 279:928–931

    Google Scholar 

  • Godtfredsen WO, Jahnsen S, Lorck H, Roholt K, Tybring L (1962b) Fusidic acid; a new antibiotic. Nature 193:987

    PubMed  CAS  Google Scholar 

  • Godtfredsen WO, Von Daehne W, Tybring L, Vangedal S (1966) Fusidic acid derivatives. I. Relationship between structure and antibacterial activity. J Med Chem 9:15–22

    PubMed  CAS  Google Scholar 

  • Godwin JR, Anthony VM, Clough JM, Godfrey CRA (1992) Brighton Crop Prot Conf: pests and diseases. British Crop Protection Council, Farnham, p 435

    Google Scholar 

  • Godwin JR, Bartlett DW, Clough JM, Godfrey CRA, Harrison EG, Maund S (2000) Picoxystrobin: a new strobilurin fungicide for use on cereals. In: Proc Brighton Crop Protect Conf: Pests and Diseases. British Crop Protection Council, Farnham, UK, pp 533–540

  • Griffiths HJ (1978) A handbook of veterinary parasitology: domestic animals of North America. University of Minnesota Press, Minneapolis, pp 46–47

    Google Scholar 

  • Grove JF, MacMillan J, Mulholland TPC, Rogers MAT (1952) Griseofulvin. Part IV. Structure. J Chem Soc 3977–3987

  • Guenthner SH, Wenzel RP (1984) In vitro activities of teichomycin, fusidic acid, flucloxacillin, fosfomycin, and vancomycin against methicillinresistant Staphylococcus aureus. Antimicrob Agents Chemother 26:268–269

    PubMed  CAS  Google Scholar 

  • Gull K, Trinci APJ (1973) Griseofulvin inhibits fungal mitosis. Nature 244:292–294

    PubMed  CAS  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implication of their occurence. J Nat Prod 69:509–526

    PubMed  CAS  Google Scholar 

  • Hagel I, Giusti T (2010) Ascaris lumbricoides: an overview of therapeutic targets. Infect Disord Drug Targets 10:349–367

    PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2002) The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277:25847–25850

    PubMed  CAS  Google Scholar 

  • Harder A, Schmitt-Wrede HP, Krücken J, Marinovski P, Wunderlich F, Willson J, Amliwala K, Holden-Dye L, Walker R (2003) Cyclooctadepsipeptides—an anthelmintically active class of compounds exhibiting a novel mode of action. Int J Antimicrob Agents 22:318–331

    PubMed  CAS  Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891

    PubMed  CAS  Google Scholar 

  • Hayase Y, Kataoka T, Masuko M, Niikawa M, Ichinari M, Takenaka H, Takahashi T, Hayashi Y, Takeda R (1995) Phenoxyphenyl alkoxyiminoacetamides. New broad-spectrum fungicides. In: Baker DR, Fenyes JG, Basarab GS (eds) Synthesis and chemistry of agrochemicals IV. ACS Symposium Series 584. American Chemical Society, Washington DC, pp 343–353

    Google Scholar 

  • Hensens OD, Ondeyka JG, Dombrowski AW, Ostlind DA, Zink DL (1999) Isolation and structure of nodulisporic acid A1 and A2, novel insecticides from a Nodulisporium sp. Tetrahedron Lett 40:5455–5458

    CAS  Google Scholar 

  • Ho YS, Duh JS, Jeng JH, Wang YJ, Liang YC, Lin CH, Tseng CJ, Yu CF, Chen RJ, Lin JK (2001) Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells. Int J Cancer 91:393–401

    PubMed  CAS  Google Scholar 

  • Holliday J, Cleaver M (2008) Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes): a review. Int J Med Mushr 10:219–234

    CAS  Google Scholar 

  • Holten KB, Onusko EM (2000) Appropriate prescribing of oral beta-lactam antibiotics. Am Fam Physician 62:611–620

    PubMed  CAS  Google Scholar 

  • Hosokawa T, Inui S, Murahashi SI (1983) Ganoderic acid T and Z: cytotoxic triterpenes from Ganoderma lucidum. Tetrahedron Lett 24:1081–1084

    Google Scholar 

  • Houchins J, Hind G (1983) Flash spectroscopic characterization of photosynthetic electron transport in isolated heterocysts. Arch Biochem Biophys 224:272–282

    PubMed  CAS  Google Scholar 

  • Hoye TR, Tennakoon MA (2000) Synthesis (and alternative proof of configuration) of the scyphostatin C(1′)-C(20′) trienoyl fragment. Org Lett 2:1481–1483

    PubMed  CAS  Google Scholar 

  • Huber FM, Gottlieb D (1968) The mechanism of action of griseofulvin. Can J Microbiol 14:111–118

    PubMed  CAS  Google Scholar 

  • Hyde KD, Bahkali AH, Moslem MA (2010) Fungi—an unusual source for cosmetics. Fungal Divers 43:1–9

    Google Scholar 

  • IMS Health (2005) Annual Report on prescription drug trends. www.imshealth.com

  • IMS Health (2008) Annual Report on prescription drug trends. www.imshealth.com

  • Irrgang S, Schlosser D, Fritsche W (1997) Involvement of cytochrome P-450 in the 15alpha-hydroxylation of 13-ethyl-gon-4-ene-3,17-dione by Penicillium raistrickii. J Steroid Biochem Mol Biol 60:339–346

    PubMed  CAS  Google Scholar 

  • Ishii H, Fraaije BA, Sugiyama T, Noguchi K, Nishimura K, Takeda T, Amano T, Hollomon DW (2001) Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology 91:1166–1171

    PubMed  CAS  Google Scholar 

  • Izuhara T, Katoh T (2001) Studies toward the total synthesis of scyphostatin: first entry to the highly functionalized cyclohexenone segment. Org Lett 3:1653–1656

    PubMed  CAS  Google Scholar 

  • Jeschke P, Harder A, Etzel W, Gau W, Thielking G, Bonse G, Iinuma K (2001) Synthesis and anthelmintic activity of thioamide analogues of cyclic octadepsipeptides such as PF1022A. Pest Manag Sci 57:1000–1006

    PubMed  CAS  Google Scholar 

  • Jiang MY, Feng T, Liu JK (2011) N-containing compounds of macromycetes. Nat Prod Rep 28:783–808

    PubMed  CAS  Google Scholar 

  • Kanski JJ (1974) Treatment of late endophthalmitis associated with filtering blebs. Arch Ophthalmol 91:339–343

    PubMed  CAS  Google Scholar 

  • Keller-Juslen C, Kuhn M, Loosli H-R, Pechter TJ, von Weber HP, Wartburg A (1976) Structure des cyclopeptideantibiotikum SL 7810 (Echinocandin B). Tetrahedron Lett 17:4147–4150

    Google Scholar 

  • Khan MA, Tania M, Zhang DZ, Chen HC (2010) Cordyceps mushroom: a potent anticancer nutraceutical. Open Nutraceuticals J 3:179–183

    CAS  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep. doi:10.1039/C1NP00008J

  • Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. J Am Med Assoc 298:1763–1771

    CAS  Google Scholar 

  • Koehn FE (2009) Drug discovery from natural products. Nature 8:678

    Google Scholar 

  • Koester DH (1937) United States Patent 2, 236, 574

  • Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77:325–328

    PubMed  CAS  Google Scholar 

  • Kubota T, Asaka Y, Miura I, Mori H (1982) Structures of ganoderic acid A and B, two new lanostane type bitter triterpenes from Ganoderma lucidum (Fr.) Karst. Helv Chim Acta 65:611–619

    CAS  Google Scholar 

  • Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–695

    PubMed  CAS  Google Scholar 

  • Law MR, Wald NJ, Rudnicka AR (2003) Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. Br Med J 326:1423–1429

    CAS  Google Scholar 

  • Lee BH, Dutton FE, Thompson DP, Thomas EM (2002) Generation of a small library of cyclodepsipeptide PF1022A analogues using a cyclization-cleavage method with oxime resin. Bioorg Med Chem Lett 12:353–356

    PubMed  CAS  Google Scholar 

  • Leigh DA (1974) Clinical importance of infections due to Bacteroides fragilis and role of antibiotic therapy. Br Med J 3:225–228

    PubMed  CAS  Google Scholar 

  • Lesemann SS, Schimpke S, Dunemann F, Deising HB (2006) Mitochondrial heteroplasmy for the cytochrome b gene controls the level of strobilurin resistance in the apple powdery mildew fungus Podosphaera leucotricha (Ell. & Ev.) E.S. Salmon. J Plant Dis Protect 113:259–266

    CAS  Google Scholar 

  • Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Halsey J, Qizilbash N, Peto R, Collins R (2007) Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370:1829–1839

    PubMed  Google Scholar 

  • Lichtiger S, Present DH, Kornbluth A, Gelernt I, Bauer J, Galler G, Michelassi F, Hanauer S (1994) Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med 330:1841–1845

    PubMed  CAS  Google Scholar 

  • Lindequist U, Rausch R, Füssel A, Hanssen HP (2010) Higher fungi in traditional and modern medicine. Med Monatsschr Pharm 33:40–48

    PubMed  CAS  Google Scholar 

  • MacGowan AP, Greig MA, Andrews JM, Reeves DS, Wise R (1989) Pharmacokinetics and tolerance of a new film-coated tablet of sodium fusidate administered as a single oral dose to healthy volunteers. J Antimicrob Chemother 23:409–415

    PubMed  CAS  Google Scholar 

  • Mahato SB, Banerjee S (1985) Steroid transformation by microorganisms II. Phytochemistry 24:1403–1421

    CAS  Google Scholar 

  • Mahato SB, Garai S (1997) Advances in microbial steroid biotransformation. Steroids 62:332–345

    PubMed  CAS  Google Scholar 

  • Mahato SB, Mukherjee A (1984) Steroid transformations by microorganisms. Phytochemistry 23:2131–2154

    CAS  Google Scholar 

  • Maksay G, Laube B, Betz H (2001) Subunit-specific modulation of glycine receptors by neurosteroids. Neuropharmacology 41:369–376

    PubMed  CAS  Google Scholar 

  • Malaviya A, Gomes J (2008) Androstenedione production by biotransformation of phytosterols. Bioresour Technol 99:6725–6737

    PubMed  CAS  Google Scholar 

  • Mamoh L (1937) United States Patent 2, 186, 9006

  • Manosroia J, Saowakhonb S, Manosroia A (2007) A novel one-step biotransformation of cortexolone-21-acetate to hydrocortisone acetate using Cunninghamella blakesleeana ATCC 8688a. Enzyme Microb Technol 41:322–325

    Google Scholar 

  • Margot P, Huggenberger F, Amrein J, Weiss B (1998) CGA 279202: a new broad-spectrum strobilurin fungicide. In: Proc Brighton Crop Protect Conf: Pests and Diseases. British Crop Protection Council, Farnham, UK, pp 375–382

  • Markowski M, Ungeheuer M, Bitran D, Locurto C (2001) Memory enhancing effect of DHEAS in aged mice on a win-shaft water escape task. Physiol Behav 72:521–525

    PubMed  CAS  Google Scholar 

  • Mehlhom H (1988) Parasitology in focus, facts and trends. Springer, New York

    Google Scholar 

  • Meinke PT, Colletti SL, Fisher MH, Wyvratt MJ, Shih TL, Ayer MB, Li C, Lim J, Ok D, Salva S, Warmke LM, Zakson M, Michael BF, deMontigny P, Ostlind DA, Fink D, Drag M, Schmatz DM, Shoop WL (2009) Discovery of the development candidate N-tert-butyl nodulisporamide: a safe and efficacious once monthly oral agent for the control of fleas and ticks on companion animals. J Med Chem 52:3505–3515

    PubMed  CAS  Google Scholar 

  • Mellon SH, Griffin LD (2002) Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 13:35–43

    PubMed  CAS  Google Scholar 

  • Miles RS, Moyes A (1978) Comparison of susceptibility of Neisseria meningitidis to sodium sulphadiazine and sodium fusidate in vitro. J Clin Pathol 31:355–358

    PubMed  CAS  Google Scholar 

  • Moisan H, Pruneau M, Malouin F (2010) Binding of ceftaroline to penicillin-binding proteins of Staphylococcus aureus and Streptococcus pneumoniae. J Antimicrob Chemother 65:713–716

    PubMed  CAS  Google Scholar 

  • Morris MI, Villmann M (2006a) Echinocandins in the management of invasive fungal infections, part 1. Am J Health Syst Pharm 63:1693–1703

    PubMed  CAS  Google Scholar 

  • Morris MI, Villmann M (2006b) Echinocandins in the management of invasive fungal infections, Part 2. Am J Health Syst Pharm 63:1813–1820

    PubMed  CAS  Google Scholar 

  • Mostafa ME, Zohri AA (2000) Progesterone side-chain degradation by some species of Aspergillus flavus group. Folia Microbiol 45:243–247

    CAS  Google Scholar 

  • Mott JL, Zhang D, Freeman JC, Mikolajczak P, Chang SW, Zassenhaus HP (2004) Cardiac disease due to random mitochondrial DNA mutations is prevented by cyclosporin A. Biochem Biophys Res Commun 319:1210–1215

    PubMed  CAS  Google Scholar 

  • Murray HC, Peterson DH (1952) United States Patent 2602769

  • Nara F, Tanaka M, Hosoya T, Suzuki-Konagai K, Ogita T (1999a) Scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima: taxonomy of the producing organism, fermentation, isolation, and physico-chemical properties. J Antibiot 52:525–530

    PubMed  CAS  Google Scholar 

  • Nara F, Tanaka M, Masuda-Inoue S, Yamasato Y, Doi-Yoshioka H, Suzuki-Konagai K, Kumakura S, Ogita T (1999b) Biological activities of scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima. J Antibiot 52:531–535

    PubMed  CAS  Google Scholar 

  • Negishi S, Cai-Huang Z, Hasumi K, Murakawa S, Endo A (1986) Productivity of molacolin K (mevilonin) in the genus Monascus. Hakko Kogaku Kaishi 64:509–512

    CAS  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    PubMed  CAS  Google Scholar 

  • Newton GGF, Abraham EP (1955) Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175:548

    PubMed  CAS  Google Scholar 

  • Nishitoba T, Sato H, Shirasu S, Sakamura S (1987) Novel triterpenoids from the mycelial mat at the previous stage of fruiting of G. lucidum. Agric Biol Chem 51:619–622

    CAS  Google Scholar 

  • Nissen S, Nicholls S, Sipahi I, Libby P, Raichlen J, Ballantyne C, Davignon J, Erbel R, Fruchart J, Tardif J, Schoenhagen P, Crowe T, Cain V, Wolski K, Goormastic M, Tuzcu E (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. J Am Med Assoc 295:1556–1565

    CAS  Google Scholar 

  • Ondeyka JG, Helms GL, Hensens OD, Goetz MA, Zink DL, Tsipouras A, Shoop WL, Slayton L, Dombrowski AW, Polishook JD, Ostlind DA, Tsou NN, Ball RG, Singh SB (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulisporium sp. isolation, structure determination, and chemical transformations. J Am Chem Soc 119:8809–8816

    CAS  Google Scholar 

  • Osbourn AE, Lanzotti V (2009) Plant-derived natural products: synthesis, function, and application. Springer, New York

    Google Scholar 

  • Otaka T, Kaji A (1973) Evidence that fusidic acid inhibits the binding of aminoacyl-tRNA to the donor as well as the acceptor site of the ribosomes. Eur J Biochem 38:46–53

    PubMed  CAS  Google Scholar 

  • Panda D, Rathinasamy K, Santra MK, Wilson L (2005) Kinetic suppression of microtubule dynamic instability by griseofulvin: implications for its possible use in the treatment of cancer. PNAS 102:9878–9883

    PubMed  CAS  Google Scholar 

  • Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42:17–26

    Google Scholar 

  • Penman R (1962) Fusidic acid in bacterial endocarditis. Lancet 280:1277–1278

    Google Scholar 

  • Petrič S, Hakki T, Bernhardt R, Zigon D, Crešnar B (2010) Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application. J Biotechnol 150:428–437

    PubMed  Google Scholar 

  • Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int, Article ID: 576286, doi:10.4061/2011/576286

  • Pohold DJ, Saravolatz LD, Somerville MM (1987) In vitro susceptibility of gram-positive cocci to LY146032, teicoplanin, sodium fusidate, vancomycin, and rifampicin. J Antimicrob Chemother 20:197–202

    Google Scholar 

  • Poucheretpet P, Fons F, Rapior S (2006) Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogamie Mycol 27:311–333

    Google Scholar 

  • Pritchard DI (2005) Sourcing a chemical succession for cyclosporin from parasites and human pathogens. Drug Discov Today 10:688–691

    PubMed  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    PubMed  CAS  Google Scholar 

  • Ravn HO (1967) Fucidin og novobiocin som kombinationsbehandling ved akut osteomyelitis og ostitis. Ugeskr Laeger 129:15

    Google Scholar 

  • Rebacz B, Larsen TO, Clausen MH, Rønnest MH, Löffler H, Ho AD, Krämer A (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67:6342–6350

    PubMed  CAS  Google Scholar 

  • Reeves DS (1987) The pharmacokinetics of fusidic acid. J Antimicrob Chemother 20:467–476

    PubMed  CAS  Google Scholar 

  • Richardson MD, Warnock DW (2003) Fungal infection: diagnosis and management, 3rd edn. Blackwell Publishing Ltd, Oxford, pp 70–72

    Google Scholar 

  • Robel P, Baulieu E-E (1995) Dehydroepiandrosterone (DHEA) is a neuroactive neurosteroid. Ann NY Acad Sci 774:82–110

    PubMed  CAS  Google Scholar 

  • Runcie KA, Taylor RJK (2001) A short and efficient route to novel scyphostatin analogues. Org Lett 3:3237–3239

    PubMed  CAS  Google Scholar 

  • Rupprecht R, Holsboer F (1999) Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 22:410–416

    PubMed  CAS  Google Scholar 

  • Saito S, Tanaka N, Fujimoto K, Kogen H (2000) Absolute configuration of scyphostatin. Org Lett 2:505–506

    PubMed  CAS  Google Scholar 

  • Sallam LAR, El-Refai AM, El-Minofi HA (2005) Physiological and biochemical improvement of the enzyme side-chain degradation of cholesterol by Fusarium solani. Process Biochem 40:203–206

    CAS  Google Scholar 

  • Samanta TB, Ghosh DK (1987) Characterization of progesterone 11 alpha-hydroxylase of Aspergillus ochraceus TS: a cytochrome P-450 linked monooxygenase. J Steroid Biochem 28:327–332

    PubMed  CAS  Google Scholar 

  • Sasaki T, Takagi M, Yaguchi T, Miyadoh S, Okada T, Koyama M (1992) A new anthelmintic cyclodepsipeptide, PF1022A. J Antibiot 45:692–697

    PubMed  CAS  Google Scholar 

  • Sauter H, Steglich W, Anke T (1999) Strobilurins: evolution of new class of active substances. Angew Chem Int Ed 38:1328–1349

    Google Scholar 

  • Scherkenbeck J, Harder A, Plant A, Dyker H (1998) PF1022A—a novel anthelmintic cyclooctadepsipeptide. Modification and exchange of the N-methyl leucine residues. Bioorg Med Chem Lett 8:1035–1040

    PubMed  CAS  Google Scholar 

  • Schoeller W (1937) United States Patent 2, 184, 167

  • Schwartz RE, Giacobbe RA, Boand JA, Monaghan RL (1989) L-671,329, a new antifungal agent. I. Fermentation and isolation. J Antibiot 42:163–167

    PubMed  CAS  Google Scholar 

  • Sedlaczek L (1988) Biotransformations of steroids. Crit Rev Biotechnol 7:187–236

    PubMed  CAS  Google Scholar 

  • Shaw LM (1989) Advances in cyclosporine pharmacology, measurement, and therapeutic monitoring. Clin Chem 35:1299–1308

    PubMed  CAS  Google Scholar 

  • Shida D, Takabe K, Kapitonov D, Milstien S, Spiegel S (2008) Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 9:662–673

    PubMed  CAS  Google Scholar 

  • Shieh YH, Liu CF, Huang YK, Yang JY, Wu IL, Lin CH, Li SC (2001) Evaluation of the hepatic and renal-protective effects of Ganoderma lucidum in mice. Am J Clin Med 29:501–507

    CAS  Google Scholar 

  • Shkumatov VM, Usova EV, Poljakov YS, Frolova NS, Radyuk VG, Mauersberger S, Chernogolov AA, Honeck H, Schunck WH (2002) Biotransformation of steroids by a recombinant yeast strain expressing bovine cytochrome P-45017α. Biochemistry 67:456–467

    PubMed  CAS  Google Scholar 

  • Shoop WL, Gregory LM, Zakson-Aiken M, Michael BF, Haines HW, Ondeyka JG, Meinke PT, Schmatz DM (2001) Systemic efficacy of nodulisporic acid against fleas on dogs. J Parasitol 87:419–423

    PubMed  CAS  Google Scholar 

  • Siev M, Weinberg R, Penman S (1969) The selective interruption of nucleolar RNA synthesis in HELA cells by cordycepin. J Cell Biol 41:510–520

    PubMed  CAS  Google Scholar 

  • Singh SB, Barrett JF (2006) Empirical antibacterial drug discovery—foundation in natural products. Biochem Pharmacol 71:1006–1015

    PubMed  CAS  Google Scholar 

  • Smith D, Ryan MJ (2009) Fungal sources for new drug discovery. AccessScience, ©McGraw-Hill Companies, http://www.accessscience.com

  • Sonomoto K, Hoq MMD, Tanaka A, Fukui S (1981) Growth of Curvularia lunata spores into mycelial form with various gels, and steroid 11β-hydroxy1ation by the entrapped mycelia. J Ferment Technol 59:465–469

    CAS  Google Scholar 

  • Spiteller P (2008) Chemical defence strategies of higher fungi. Chem Eur J 14:9100–9110

    CAS  Google Scholar 

  • Staudinger H (1907) Zur Kenntniss der Ketene. Diphenylketen. Justus Liebigs Ann Chem 356:51–123

    CAS  Google Scholar 

  • Stirling J, Goodwin S (1977) Susceptibility Bacteroides fragilis to fusidic acid. J Antimicrob Chemother 3:522–523

    PubMed  CAS  Google Scholar 

  • Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333

    PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    PubMed  CAS  Google Scholar 

  • Sweetman SC (2009) Cardiovascular drugs. Martindale: the complete drug reference, 36th edn. Pharmaceutical Press, London, pp 1155–1434

    Google Scholar 

  • Taburet AM, Guibert J, Kitzis MD, Sorensen H, Acar JF, Singlas E (1990) Pharmacokinetics of sodium fusidate after single and repeated infusions and oral administration of a new formulation. J Antimicrob Chemother 25:23–31

    PubMed  CAS  Google Scholar 

  • Tanaka N, Kinoshita T, Masukawa H (1968) Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem Biophys Res Commun 15:278–283

    Google Scholar 

  • Tanaka M, Nara F, Suzuki-Konagai K, Hosoya T, Ogita T (1997) Structural elucidation of scyphostatin, an inhibitor of membrane-bound neutral sphingomyelinase. J Am Chem Soc 119:7871–7872

    CAS  Google Scholar 

  • Tang YJ, Zhong JJ (2004) Modeling the kinetics of cell growth and ganoderic acid production in liquid static cultures of the medicinal mushroom Ganoderma lucidum. Biochem Eng J 21:259–264

    CAS  Google Scholar 

  • Tang W, Gu T, Zhong JJ (2006) Separation of targeted ganoderic acids from Ganoderma lucidum by reversed phase liquid chromatography with ultraviolet and mass spectrometry detections. Biochem Eng J 32:205–210

    CAS  Google Scholar 

  • Taylor G, Bloor K (1962) Antistaphylococcal activity of fucidin. Lancet 279:935–937

    Google Scholar 

  • Taylor F, Ward K, Moore TH, Burke M, Davey Smith G, Casas JP, Ebrahim S (2011) Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev:CD004816

  • Tidwell TT (2008) Hugo (Ugo) Schiff, Schiff bases, and a century of β-lactam synthesis. Angew Chem Int Edit 47:1016–1020

    CAS  Google Scholar 

  • Verbist L (1990) The antimicrobial activity of fusidic acid. J Antimicrob Chemother 25:1–5

    PubMed  CAS  Google Scholar 

  • Verza M, Arakawa NS, Lopes NP, Kato MJ, Pupo MT, Said S, Carvalho I (2009) Biotransformation of a tetrahydrofuran lignan by the endophytic fungus Phomopsis sp. J Braz Chem Soc 20:195–200

    CAS  Google Scholar 

  • Viola F, Caputo O, Balliano G, Delprino L, Cattel L (1983) Side chain degradation and microbial reduction of different steroids by Aspergillus auroefulgens. J Steroid Biochem 19:1451–1458

    PubMed  CAS  Google Scholar 

  • von Benz F, Knusel F, Nuesch J, Treichler H, Voser W, Nyfeler R, Keller-Schierlein W (1974) Echinocandin B, ein neuartiges polipeptide-antibiotikum aus Aspergillus nidulans var. echinatus: Isolierung und Bausteine. Helv Chim Acta 57:2459–2477

    CAS  Google Scholar 

  • von Daehne W, Godtfredsen WO, Rasmussen PR (1979) Structureactivity relationships in fusidic acid-type antibiotics. Adv Appl Microbiol 25:95–146

    Google Scholar 

  • Von Jagow G, Gribble GW, Trumpower BL (1986) Mucidin and strobilurin A are identical and inhibit electron transfer in the cytochrome bc 1 complex of the mitochondrial respiratory chain at the same site as myxothiazol. Biochemistry 25:775–780

    Google Scholar 

  • von Samson-Himmelstjerna G, Harder A, Sangster NC, Coles GC (2005) Efficacy of two cyclooctadepsipeptides, PF1022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle. Parasitology 130:343–347

    Google Scholar 

  • Waldmeier PC, Zimmermann K, Qian T, Tintelnot-Blomley M, Lemasters JJ (2003) Cyclophilin D as a drug target. Curr Med Chem 10:1485–1506

    PubMed  CAS  Google Scholar 

  • Walsh C (2003) Antibiotics: actions, origins, resistance. ASM Press, Washington DC

    Google Scholar 

  • Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulatory polysaccharides. Appl Microbiol Biotechnol 60:258–274

    PubMed  CAS  Google Scholar 

  • Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: a modem perspective. Crit Rev Immunol 19:65–96

    PubMed  CAS  Google Scholar 

  • Waxman DJ, Strominger JL (1983) Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem 52:825–869

    PubMed  CAS  Google Scholar 

  • Weber W, Anke T, Steffan B, Steglich W (1990) Antibiotics from basidiomycetes. XXXII. Strobilurin E: a new cytostatic and antifungal (E)-beta-methoxyacrylate antibiotic from Crepidotus fulvotomentosus Peck. J Antibiot 43:207–212

    PubMed  CAS  Google Scholar 

  • Welte T, Pletz MW (2010) Antimicrobial treatment of nosocomial meticillin-resistant Staphylococcus aureus (MRSA) pneumonia: current and future options. Int J Antimicrob Agents 36:391–400

    PubMed  CAS  Google Scholar 

  • Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72:19–44

    PubMed  CAS  Google Scholar 

  • Whitby M (1999) Fusidic acid in septicaemia and endocarditis. Int J Antimicrob Agents 12:S17–S22

    PubMed  CAS  Google Scholar 

  • Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52:1189–1208

    PubMed  CAS  Google Scholar 

  • Williamson J, Russell F, Doig WM, Paterson RW (1970) Estimation of sodium fusidate levels in human serum, aqueous humour, and vitreous body. Br J Ophthalmol 54:126–130

    PubMed  CAS  Google Scholar 

  • Wise R, Pippard M, Mitchard M (1977) The disposition of sodium fusidate in man. Br J Clin Pharmacol 4:615–619

    PubMed  CAS  Google Scholar 

  • Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 44:15–31

    Google Scholar 

  • Yamashita M, Katsumata M, Iwashima M, Kimura M, Shimizu C, Kamata T, Shin T, Seki N, Suzuki S, Taniguchi M, Nakayama T (2000) T cell receptor-induced calcineurin activation regulates T helper type 2 cell development by modifying the interleukin 4 receptor signaling complex. J Exp Med 191:1869–1879

    PubMed  CAS  Google Scholar 

  • Yaskowiak ES, March PE (1995) Small clusters of divergent amino acids surrounding the effector domain mediate the varied phenotypes of EF-G and LepA expression. Mol Microbiol 15:943–953

    PubMed  CAS  Google Scholar 

  • Yoon SY, Eo SK, Kim YS, Lee CK, Han SS (1994) Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res 17:438–442

    PubMed  CAS  Google Scholar 

  • Zakharychev VV, Kovalenko LV (1998) Natural compounds of the strobilurin series and their synthetic analogues as cell respiration inhibitors. Russ Chem Rev 67:535–544

    Google Scholar 

  • Zeelen FJ (1990) Medicinal chemistry of steroids. Elsevier, Amsterdam

    Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    PubMed  CAS  Google Scholar 

  • Zinner SH, Lagast H, Klastersky J (1981) Antistaphylococcal activity of rifampin with other antibiotics. J Infect Dis 144:365–371

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Continued support by BMBF to P.P. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amal H. Aly or Peter Proksch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aly, A.H., Debbab, A. & Proksch, P. Fifty years of drug discovery from fungi. Fungal Diversity 50, 3 (2011). https://doi.org/10.1007/s13225-011-0116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13225-011-0116-y

Keywords

  • Drug discovery
  • Fungi
  • Bioactive metabolites