Fungal Diversity

, Volume 45, Issue 1, pp 21–32 | Cite as

Culture collections, the new herbaria for fungal pathogens

  • Kamel A. Abd-Elsalam
  • Mohamed A. Yassin
  • Mohamed A. Moslem
  • Ali H. Bahkali
  • Pierre J. G. M. de Wit
  • Eric H. C. McKenzie
  • Steven L. Stephenson
  • Lei Cai
  • Kevin D. Hyde
Review

Abstract

This paper discusses the importance of culture collections in plant pathology and reviews the methods currently available to store cultures. The preservation and maintenance of plant pathogenic fungi in a viable yet stable state for long periods has always been important, because isolates of these fungi can serve as standards for identification of quarantine taxa. Such isolates are also important for testing disease resistance and for plant breeding programs. The increasing use of molecular sequences analysis in the systematics of plant pathogenic fungi has meant that maintaining fungi in culture collections has become essential. Herein we discuss trends in the identification of plant and post-harvest pathogens, using Aspergillus, Colletotrichum, Phyllosticta and Mycosphaerella and its anamorphs as examples. Herbarium specimens, although still a requirement of the Botanical Code when describing new species are, perhaps, less important in providing useful information when defining a pathogenic species. Many pathogen groups consist of complexes of species and morphology alone can no longer distinguish among species. However, ex-type living cultures are essential for identification and future species comparisons that incorporate the use of molecular techniques. As such, ex-type cultures of any new species of pathogen, or when new diseases are reported or studies involving pathogenic strains are published, cultures of the taxa studied should be deposited in widely available culture collections, preferably in at least three members of World Federation for Culture Collections. Methods for the storage of fungal cultures such as water preservation, freezing, mineral oil overlay, freeze drying and lyophilization are reviewed in this paper. The main objective of culture preservation is to maintain the vigor and genetic characteristics of a pure culture. Therefore, safe long-term preservation methods are required to ensure fungal survival and retention of any valuable characteristics. To minimize the risk of any morphological, physiological, or genetic changes, several different preservation conditions should be used whenever possible. The present review also describes a complete preservation methodology that can be used for plant pathogenic fungi.

Keywords

Cryopreservation Lyophilization Long-term preservation Plant pathogen collections Type cultures 

References

  1. Agrios GN (2004) Plant pathology, 5th edn. Elsevier Academic, BurlingtonGoogle Scholar
  2. Atkinson RG (1954) Quantitative studies on the survival of fungi in five-year-old dried soil cultures. Can J Bot 32:673–678CrossRefGoogle Scholar
  3. Baker M, Jeffries P (2006) Use of commercially available cryogenic vials for long-term preservation of dermatophyte fungi. J Clin Microbiol 44:617–618PubMedCrossRefGoogle Scholar
  4. Bakerspiegel A (1953) Soil as a storage medium for fungi. Mycologia 45:596–604Google Scholar
  5. Balajee SA, Gribskov J, Brandt M, Ito J, Fothergill A, Marr KA (2005) Mistaken Identity: neosartorya pseudofischeri and its anamorph masquerading as Aspergillus fumigatus. J Clin Microbiol 43:5996–5999PubMedCrossRefGoogle Scholar
  6. Barrett RW, Johnson GB, Ogata WN (1965) Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52:233–246Google Scholar
  7. Baskarathevan J, Jaspers MV, Jones EE, Ridgway HJ (2009) Evaluation of different storage methods for rapid and cost-effective preservation of Botryosphaeria species. New Zeal Plant Prot 62:234–237Google Scholar
  8. Boesewinkel HJ (1976) Storage of fungal cultures in water. Trans Brit Mycol Soc 66:183–185CrossRefGoogle Scholar
  9. Borba CM, Rodrigues KF (2000) Viability and sporulating capability of Coelomycetes preserved under a range of different storage regimes. Rev Iberoam Micol 17:142–145Google Scholar
  10. Borman AM, Szekely A, Campbell CK, Johnson EM (2006) Evaluation of the viability of pathogenic filamentous fungi after prolonged storage in sterile water and review of recent published studies on storage methods. Mycopathol 161:361–368CrossRefGoogle Scholar
  11. Buell CB, Weston WH (1947) Application of the mineral oil conservation method for maintaining collections of fungus cultures. Am J Bot 34:555–561CrossRefGoogle Scholar
  12. Bueno CJ, Ambrósio MM, Souza NL (2006) Storage of soilborne phytopathogenic fungi. Summa Phytopathol 32:42–50Google Scholar
  13. Bunny FJ (1981) Variation in the pathogenicity of Gaeumannomyces graminis after storage. Austral Plant Path 10:22CrossRefGoogle Scholar
  14. Bunse T, Steigleder GK (1991) The preservation of fungal cultures by liophilization. Mycoses 34:173–176PubMedCrossRefGoogle Scholar
  15. Burdsall HH Jr, Dorworth EB (1994) Preserving cultures of wood-decaying Basidiomycotina using sterile distilled water in cryovials. Mycologia 86:275–280CrossRefGoogle Scholar
  16. Cahill DM, Rookes JE, Wilson BA, Gibson L, McDougall KL (2008) Phytophthora cinnamomi and Australia’s biodiversity: impacts, predictions and progress towards control. Austral J Bot 56:279–310CrossRefGoogle Scholar
  17. Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204Google Scholar
  18. Cannon PF, Buddie AG, Bridge PD (2008) The typification of Colletotrichum gloeosporioides. Mycotaxon 104:189–204Google Scholar
  19. Carmichael JW (1962) Viability of mold cultures stored at −20ºC. Mycologia 54:432–436CrossRefGoogle Scholar
  20. Castellani A (1939) The viability of some pathogenic fungi in sterile distilled water. J Trop Med Hyg 42:225–226Google Scholar
  21. Chandler D (1994) Cryopreservation of fungal spores using porous beads. Mycol Res 98:525–526CrossRefGoogle Scholar
  22. Crous PW (2009) Taxonomy and phylogeny of the genus Mycosphaerella and its anamorphs. Fungal Divers 38:1–24Google Scholar
  23. Crous PW, Braun U (2003) Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora. CBS Biodivers Series 1Google Scholar
  24. Crous PW, Kang JC, Braun U (2001) A phylogenetic redefinition of anamorph genera in Mycosphaerella based on ITS rDNA sequence and morphology. Mycologia 93:1081–1101CrossRefGoogle Scholar
  25. Crous PW, Wingfield MJ, Mansilla JP, Alfenas AC, Groenewald JZ (2006) Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. II. Stud Mycol 55:99–131PubMedCrossRefGoogle Scholar
  26. Crous PW, Braun U, Groenewald JZ (2007) Mycosphaerella is polyphyletic. Stud Mycol 58:1–32PubMedCrossRefGoogle Scholar
  27. de Vries RP, Frisvad JC, van de Vondervoort PJI, Burgers K, Kuijpers AFA, Samson RA, Visser J (2005) Aspergillus vadensis, a new species of the group of black Aspergilli. Anton Leeuwen 87:195–203CrossRefGoogle Scholar
  28. Deighton FC (1974) Studies on Cercospora and allied genera. V. Mycovellosiella Rangel, and a new species of Ramulariopsis. Mycol Pap 137:1–75Google Scholar
  29. Deighton FC (1976) Studies on Cercospora and allied genera. VI. Pseudocercospora Speg., Pantospora Cif. and Cercoseptoria Petr. Mycol Pap 140:1–168Google Scholar
  30. Delatour C (1991) A very simple method for long-term storage of fungal cultures. Euro J Forest Patholo 21:444–445CrossRefGoogle Scholar
  31. Diogo HC, Sarpieri A, Pires MC (2005) Fungi preservation in distilled water. An Bras Dermatol 80:591–594CrossRefGoogle Scholar
  32. Elliott TJ (1976) Alternative ampoule for storing fungal cultures in liquid nitrogen. Trans Br Mycol Soc 67:545–546CrossRefGoogle Scholar
  33. Elliott ML (2005) Survival, growth and pathogenicity of Gaeumannomyces graminis var. graminis with different methods of long-term storage. Mycologia 97:901–907PubMedCrossRefGoogle Scholar
  34. Ellis JJ (1979) Preserving fungus strains in sterile water. Mycologia 71:1072–1075CrossRefGoogle Scholar
  35. Espinel-Ingroff A, Montero D, Mazuelos EM (2004) Long-term preservation of fungal isolates in commercially prepared cryogenic Microbank vials. J Clin Microbiol 42:1257–1259PubMedCrossRefGoogle Scholar
  36. Frank J, Crous PW, Groenewald JZ, Oertel B, Hyde KD, Phengsintham P, Schroers HJ (2010) Microcyclospora and Microcyclosporella: novel genera accommodating epiphytic fungi causing sooty blotch on apple. Persoonia 24:93–105PubMedGoogle Scholar
  37. Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U (2007) Fumonisin B2 Production by Aspergillus niger. J Agric Food Chem 55:9727–9732PubMedCrossRefGoogle Scholar
  38. Gallo MBC, Guimaraes DO, Luciano da SM, Pupo MT (2008) Natural products from endophytic fungi. In: Saikia R, Bezbaruah RL, Bora TC (eds) Microbial Biotechnology. New India Publishing Agency, pp 138–168Google Scholar
  39. Geiser DM (2004) Practical molecular taxonomy of fungi. In: Lange L, Tkacz J (eds) Advances in fungal biotechnology for industry, medicine and agriculture. Kluwer Academic, New YorkGoogle Scholar
  40. Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1–10PubMedCrossRefGoogle Scholar
  41. Grivell R, Jackson F (1969) Microbial culture preservation with silica gel. J Gen Microbiol 58:423–425PubMedGoogle Scholar
  42. Hartung de Capriles C, Mata S, Middelveen M (1989) Preservation of fungi in water (Castellani): 20 years. Mycopathol 106:73–79CrossRefGoogle Scholar
  43. Hawksworth DL (1974) Mycologist’s handbook. Commonwealth Mycological Institute, KewGoogle Scholar
  44. Heckly RJ (1978) Preservation of microorganisms. Adv Appl Microbial 24:l–53Google Scholar
  45. Heinonen TH, Holopainen T (1991) Maintenance of ectomycorrhizal fungi. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology 23. Academic, London, pp 413–422Google Scholar
  46. Homolka L, Lisá L, Eichlerová I, Nerud F (2001) Cryopreservation of some basidiomycete strains using perlite. J Microbiol Methods 47:307–313PubMedCrossRefGoogle Scholar
  47. Hong SB, Go SJ, Shin HD, Frisvad JC, Samson RA (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97:1316–1329PubMedCrossRefGoogle Scholar
  48. Hornby D, Bateman GL, Gutteridge RJ, Lucas P, Osbourn AE, Ward E, Yarham DJ (1998) Take-all disease of cereals. In: Hornby D (ed) A regional perspective. CAB International, Wallingford, p 384Google Scholar
  49. Hwang SW (1968) Investigation of ultra-low temperature for fungal cultures. I. An evaluation of liquid nitrogen storage for preservation of selected fungal cultures. Mycologia 60:613–621CrossRefGoogle Scholar
  50. Hyde KD, Cai L, Cannon PF, Crouch JA, Crous PW, Damm U, Goodwin PH, Chen H, Johnston PR, Jones EBG (2009) Colletotrichum: names in current use. Fungal Divers 39:147–183Google Scholar
  51. Ito T, Yokoyama T (1983) Preservation of basidiomycete cultures by freezing. IFO Res Commum 11:60–70Google Scholar
  52. Jong SC, Levy A, Stevenson RE (1984) Life expectancy of freeze-dried fungus cultures stored at 4 ºC. In: Kocur M, Dasilva E (eds) Proceedings of the fourth international conference on culture collections. World Federation of Culture Collections, London, pp 125–136Google Scholar
  53. Kang S, Blair JE, Geiser DM, Khang CH, Park SY, Gahegan M, O’Donnell K, Luster DG, Kim SH, Ivors KL, Lee YH, Lee YW, Grünwald NJ, Martin FM, Coffey MD, Veeraraghavan N, Makalowska I (2006) Plant pathogen culture collections: It takes a village to preserve these resources vital to the advancement of agricultural security and plant pathology. Phytopathol 96:920–925CrossRefGoogle Scholar
  54. Kvas M, Marasas WFO, Wingfield BD, Wingfield MJ, Steenkamp ET (2009) Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Divers 34:1–21Google Scholar
  55. Larena I, Melgarejo P, de Cal A (2003) Drying of conidia of Penicillium oxalicum, a biological control agent against fusarium wilt of tomato. J Pytopathol 151:600–606CrossRefGoogle Scholar
  56. Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–695PubMedCrossRefGoogle Scholar
  57. Legard DE, Chandler CK (2000) Cryopreservation of strawberry pathogen in mechanical ultra-low temperature freezer. Hort Science 15:1357Google Scholar
  58. Loegering WQ, Harmon DL (1961) A long term experiment for preservation of urediniospores of Puccinia graminis tritici in liquid nitrogen. Plant Dis Rep 45:284–285Google Scholar
  59. Manoharachary C, Sridhar K, Singh R, Adholeya A, Suryanarayanan TS, Rawat S, Johri BN (2005) Fungal biodiversity: distribution, conservation and prospecting of fungi from India. Current Sci 89:58–71Google Scholar
  60. Mayner Y, Bennetjt W, Tallant J (1971) Instability of an aflatoxin-producing strain of Aspergillus parasiticus. Mycologia 63:644–648CrossRefGoogle Scholar
  61. McGinnis MR, Padhye AA, Ajello L (1974) Storage of stock cultures of filamentous fungi, yeasts, and some aerobic actinomycetes in sterile distilled water. Appl Microbiol 28:218–222PubMedGoogle Scholar
  62. McNeill J, Barrie FF, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema J, Turland NJ (2006) International code of botanical nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress, Vienna, Austria, July 2005. Regnum Veg 146:568Google Scholar
  63. Milošević MB, Medić-Pap SS, Ignjatov MV, Petrović DN (2007) Lyophilization as a method for pathogens long term preservation. Proc Nat Sci, Matica Srpska Novi Sad 113:203–210Google Scholar
  64. Mizrahi A, Miller G (1968) Long-term preservation of a non-sporulating strain of Claviceps paspali. Appl Microbiol 16:1100–1101PubMedGoogle Scholar
  65. Murakami H, Yoshida K, Yoshida K, Noro F (1979) Tables of mycological characters of the representative strains of the black aspergilli. Taxonomic studies on Japanese industrial strains of the Aspergillus (Part 30). J Soc Brew Jpn 74:466–470Google Scholar
  66. Nakasone KK, Peterson SW, Jong SC (2004) Preservation and distribution of fungal cultures. In: Foster MS, Bills GF, Mueller GM (eds) Biodiversity of fungi: Inventory and monitoring methods. Elsevier Academic, USA, pp 37–47Google Scholar
  67. Nelson EE, Fay HA (1985) Maintaining cultures of wood rotting fungi. U.S. Department of Agriculture, Forest Service, Pacific Northwest. Forest and Range Experiment Station, Portland, Oregon. Res Note PNW 428:1–3Google Scholar
  68. Nielsen KF, Smedsgaard J, Larsen TO, Lund F, Thrane U, Frisvad JC (2004) Chemical identification of fungi: metabolite profiling and metabolomics. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental application. Marcel Dekker, New York, pp 19–35Google Scholar
  69. O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41:600–623PubMedCrossRefGoogle Scholar
  70. Okane I, Lumyong S, Nakagiri A, Ito T (2003) Extensive host range of an endophytic fungus, Guignardia endophyllicola (anamorph: Phyllosticta capitalensis). Mycoscience 44:353–363CrossRefGoogle Scholar
  71. Onions AHS (1983) Preservation of fungi. In: Smith JE, Berry DR, Kristiansen B (eds) The Filamentous Fungi, vol. 4: Fungal Technology. Edward Arnold, Great Britain, pp 373–390Google Scholar
  72. Parinao V, Patrikeevv V, Lysenkos V (1972) Investigation of the survival and physiological activity of some yeast strains after long storage in silica gel. Mikrobiologiya 41:164Google Scholar
  73. Pasarell L, McGinnis MR (1992) Viability of fungal cultures maintained at −70ºC. J Clin Microbiol 30:1000–1004PubMedGoogle Scholar
  74. Perkins DD (1962) Preservation of Neurospora stock cultures with anhydrous silica gel. Can J Microbiol 8:591–594CrossRefGoogle Scholar
  75. Perrin PW (1979) Long-term storage of cultures of wood-inhabiting fungi under mineral oil. Mycologia 71:867–869CrossRefGoogle Scholar
  76. Phoulivong S, Cai L, Chen H, McKenzie EHC, Abd-Elsalam K, Chukeatirote E, Hyde KD (2010) Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Divers. doi:10.1007/s13225-010-0046-0 Google Scholar
  77. Pointing SB, Hyde KD (eds) (2001) Bio-exploitation of filamentous fungi. Fungal diversity research series 6. Fungal Diversity, Hong KongGoogle Scholar
  78. Pringle A, Baker DM, Platt JL, Wares JP, Latge JP, Taylor JW (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59:113–126Google Scholar
  79. Puhallaj E (1968) Compatibility reactions on solid medium and interstrain inhibition in Ustilago maydis. Genetics 60:461–474Google Scholar
  80. Puhallaj E, Anagnostaksi SL (1971) Genetics and nutritional requirements of Endothia parasitica. Phytopathol 61:169–173CrossRefGoogle Scholar
  81. Pumpianskaya LV (1964) Storage of microorganisms under mineral oil. Mikrobiologiya 33:1065–1070Google Scholar
  82. Raper KB, Alexander DF (1945) Preservation of moulds by the lyophil process. Mycologia 37:499–525CrossRefGoogle Scholar
  83. Reinecke P, Fokkema NJ (1979) Pseudocercosporella herpotrichoides: storage and mass production of conidia. Trans Brit mycol Soc 72:329–330CrossRefGoogle Scholar
  84. Reinharddt J (1966) Silica gel as a preserving agent for the cellular slime mould Acrasisrosea. J Protozool 13:225–226Google Scholar
  85. Rodrigues EG, Lírio VS, Lacaz CS (1992) Preservation of fungi and actinomycetes of medical importance in distilled water. Rev Inst Med Trop 34:159–165Google Scholar
  86. Rogers WG (1972) Studies of the taxonomy and pathology of Verticillium species. Ph.D. Thesis, University of WalesGoogle Scholar
  87. Roy AJ (1968) Some fungi from Almora. Indian Phytopathol 20:340–348Google Scholar
  88. Ryan MJ, Jeffries P, Bridge PD, Smith D (2001) Developing cryopreservation protocols to secure fungal gene function. Cryo Lett 22:115–124Google Scholar
  89. Salustiano ME, Pozza EA, Ferraz Filho AC, Castro HA (2008) Viability of Puccinia pisidii urediniospores stored in different environments. Trop Plant Pathol 33:313–316Google Scholar
  90. Schipper MAA, Holtman JB (1976) Viability of lyophilized fungal cultures. Antonie Leeuwenhoek J Microbiol 42:325–328CrossRefGoogle Scholar
  91. Shearer BL, Zeyen RJ, Ooka JJ (1974) Storage and behaviour in soil of Septoria species isolated from cereals. Phytopathol 64:163–167Google Scholar
  92. Sherf AF (1943) A method for maintaining Phytomonas sepedonica in culture for long periods without transfer. Phytopathol 33:330–332Google Scholar
  93. Simpfendorfer S, Harden TJ, Murray GM (1996) Viability and pathogenicity of Phytophthora clandestina after storage in water and liquid nitrogen. Australasian Plant Pathol 25:234–239CrossRefGoogle Scholar
  94. Singleton LL, Mihail JD, Rush CM (eds) (1992) Methods for research on soilborne phytopathogenic fungi. American Phytopathological Society, St. PaulGoogle Scholar
  95. Smith D (1993) Long-term preservation of test strains (fungus). Int Biodet Biodeg 31:227–230CrossRefGoogle Scholar
  96. Smith D, Onions AHS (1994) The preservation and maintenance of living fungi, 2nd edn. CAB International, Wallingford, p 122Google Scholar
  97. Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. American Phytopathological Society, St. PaulGoogle Scholar
  98. Stalpers JA, De Hoog A, Vlug IJ (1987) Improvement of the straw technique for the preservation of fungi in liquid nitrogen. Mycologia 79:82–89CrossRefGoogle Scholar
  99. Steinkraus DC, Boys GO, Slaymaker PH (1993) Culture, storage, and incubation period of Neozygites fresenii (Entomophthorales: Neozygitaceae) a pathogen of the cotton aphid. Southw Entomol 18:197–202Google Scholar
  100. Stephenson SL (2010) The Kingdom fungi: The biology of mushrooms, molds and lichens. Timber, PortlandGoogle Scholar
  101. Trollope DR (1975) The preservation of bacteria and fungi on anhydrous silica gel: an assessment of survival over four years. J Appl Bacteriol 38:115–120PubMedGoogle Scholar
  102. van der Aa HA (1973) Studies in Phyllosticta I. Stud Mycol 5:1–110Google Scholar
  103. van der Aa HA, Vanev S (2002) A revision of the species described in Phyllosticta. Centraalbureau voor Schimmelcultures, UtrechtGoogle Scholar
  104. van Niekerk JM, Crous PW, Groenewald JZ, Fourie PH, Halleen F (2004) DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines. Mycologia 96:781–798CrossRefPubMedGoogle Scholar
  105. Windels CE, Burnes PM, Kommedahl T (1988) Five-year preservation of Fusarium species on silica gel and soil. Phytopathol 78:107–109CrossRefGoogle Scholar
  106. Windels CE, Burnes PM, Kommedahll T (1993) Fusarium species stored on silica gel and soil for ten years. Mycologia 85:21–23CrossRefGoogle Scholar
  107. Wulanderi NF, To-Anun C, Hyde KD, Duong LM, de Gruyter J, Meffert JP, Crous PW (2009) Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Divers 34:23–39Google Scholar

Copyright information

© Kevin D. Hyde 2010

Authors and Affiliations

  • Kamel A. Abd-Elsalam
    • 1
    • 6
  • Mohamed A. Yassin
    • 1
    • 6
  • Mohamed A. Moslem
    • 1
    • 6
  • Ali H. Bahkali
    • 1
    • 6
  • Pierre J. G. M. de Wit
    • 1
    • 7
  • Eric H. C. McKenzie
    • 2
    • 6
  • Steven L. Stephenson
    • 3
    • 6
  • Lei Cai
    • 4
    • 6
  • Kevin D. Hyde
    • 5
    • 6
  1. 1.College of Science, Botany and Microbiology DepartmentKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Landcare ResearchAucklandNew Zealand
  3. 3.Department of Biological SciencesUniversity of ArkansasFayettevilleUSA
  4. 4.Key Laboratory of Systematic Mycology & Lichenology, Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China
  5. 5.School of Science Mae Fah Luang UniversityChiang RaiThailand
  6. 6.Saudi Mycobank, College of Science, Botany and Microbiology DepartmentKing Saud UniversityRiyadhSaudi Arabia
  7. 7.Laboratory of Phytopathology, Wageningen UniversityWageningenThe Netherlands

Personalised recommendations