Fungal Diversity

, Volume 43, Issue 1, pp 1–9 | Cite as

Fungi—an unusual source for cosmetics

  • K. D. HydeEmail author
  • A. H. Bahkali
  • M. A. Moslem


Fruiting bodies of some wild and cultivatable mushrooms contain medicinal compounds which are being used in traditional medicines and cosmetics. There are numerous potential medicinal products from mushrooms that could be used in cosmeceuticals (products applied topically, such as creams, lotions, and ointments) or nutricosmetics (products that are ingested orally). This paper provides a review of the fungi presently used in cosmeceuticals and nutricosmetics with some examples of cosmetic types and products. Species presently used, or patented to be used, in cosmeceuticals and nutricosmetics include Agaricus subrufescens (= A. blazei, A. brasiliensis) Choiromyces maeandriformis Cordyceps sinensis, Ganoderma lucidum, Grifola frondosa, Hypsizygus ulmarium, Inonotus obliquus, Lentinula edodes, Polyporus spp., Trametes versicolor, Tremella fuciformis, Tuber spp., Schizophyllum commune and many other lesser used taxa. Cosmetics incorporating fungi include those for skin care such as anti-aging, anti-oxidants, skin revitalizing, skin whitening and hair products. The mushrooms presently used are traditionally known to produce medicinal compounds and thus were the first to be incorporated in cosmetic applications. There are, however, numerous other mushroom species that are untested, undescribed or not yet cultivatable and that have huge potential for use in the cosmetic industry. Some fungi are also used in biotransformation and the products such as lactic acid and ceramides could potentially be used in cosmetics.


Anti-aging Anti-oxidants Cosmeceuticals Medicinal fungi Nutricosmetics Skin whitening 



This study was financially supported by the project “value added products from Basidiomycetes: Putting Thailand’s biodiversity to use” (BRN049/2553).


  1. Angeli JPF, Ribeiro LR, Camelini CM, de Mendonça MM, Mantovani MS (2009) Evaluation of the antigenotoxicity of polysaccharides and β-glucans from Agaricus blazei, a model study with the single cell gel electrophoresis/Hep G2 assay. J Food Compos Anal 22:699–703CrossRefGoogle Scholar
  2. Athalye SK, Garcia RA, Wen Z (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739–2744CrossRefPubMedGoogle Scholar
  3. Barros L, Ferreira M-J, Queirós B, Ferreira ICFR, Baptista P (2007a) Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103:413–419CrossRefGoogle Scholar
  4. Barros L, Baptista P, Estevinho LM, Ferreira ICFR (2007b) Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. J Agric Food Chem 55:8766–8771CrossRefPubMedGoogle Scholar
  5. Campana F, Zervoudis S, Perdereau B, Gez E, Fourquet A, Badiu C, Tsakiris G, Koulaloglou S (2004) Topical superoxide dismutase reduces post-irradiation breast cancer fibrosis. J Cell Mol Med 8:109–116CrossRefPubMedGoogle Scholar
  6. Cheng MH, Walker TH, Hulbert GJ, Raman DR (1999) Fungal production of eicosapentaenoic and arachidonic acids from industrial waste streams and crude soybean oil. Bioresour Technol 67:101–110CrossRefGoogle Scholar
  7. Chien C-C, Tsai M-L, Chen C-C, Chang S-J, Tseng C-H (2008) Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms. Mycopathologia 166:117–120CrossRefPubMedGoogle Scholar
  8. Corey ME, Beelman RB, Seetharman K (2009) Potential for nutritional enrichment of whole-wheat bread with portabella mushroom powder (Agaricus bisporus (J. Lge) Imbach, Agaricomycetideae). Int J Med Mushrooms 11:157–166CrossRefGoogle Scholar
  9. Dubost NJ, Beelman RB, Peterson D, Royse DJ (2006) Identification and quantification of ergothioneine in cultivated mushrooms by liquid chromatography-mass spectroscopy. Int J Med Mushrooms 8:215–222CrossRefGoogle Scholar
  10. Dubost NJ, Beelman RB, Royse DJ (2007) Influence of selected cultural factors and postharvest storage on ergothioneine content of common button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae). Int J Med Mushrooms 9:163–176CrossRefGoogle Scholar
  11. Enman J, Hodge D, Berglund KA, Rova U (2008) Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia. J Agric Food Chem 56:2609–2612CrossRefPubMedGoogle Scholar
  12. Ey J, Schömig E, Taubert D (2007) Dietary sources and antioxidant effects of ergothioneine. J Agric Food Chem 55:6466–6474CrossRefPubMedGoogle Scholar
  13. Fang S-H, Rao YK, Tzeng Y-M (2008) Anti-oxidant and inflammatory mediator’s growth inhibitory effects of compounds isolated from Phyllanthus urinaria. J Ethnopharmacol 116:333–340CrossRefPubMedGoogle Scholar
  14. Ferreira Da Eira A, Kaneno R, Rodrigues Filho E, Barbisan LF, Pascholati SF, Di Piero RM, Fávero Salvadori DM, Alves De Lima PL, Ribeiro LR (2005) Farming technology, biochemistry characterization, and protective effects of culinary-medicinal mushrooms Agaricus brasiliensis S. Wasser et al. and Lentinus edodes (Berk.) Singer: Five years of research in Brazil. Int J Med Mushrooms 7:281–299CrossRefGoogle Scholar
  15. Firenzuoli F, Gori L, Lombardo G (2008) The medicinal mushroom Agaricus blazei Murrill: Review of literature and pharmaco-toxicological problems. Evid Based Complement Altern Med 5:3–15CrossRefGoogle Scholar
  16. Gao J-M, Zhang A-L, Chen H, Liu J-K (2004) Molecular species of ceramides from the ascomycete truffle Tuber indicum. Chem Phys Lipids 131:205–213CrossRefPubMedGoogle Scholar
  17. Gautier S, Xhauflaire-Uhoda E, Gonry P, Piérard GE (2008) Chitin-glucan, a natural cell scaffold for skin moisturization and rejuvenation. Int J Cosmet Sci 30:459–469CrossRefPubMedGoogle Scholar
  18. Golz-berner K, Zastrow L (2005) Cosmetic preparation containing extracts of Tuberaceae. United States Patent 6843995Google Scholar
  19. Gutiérrez A, Del Río JC, Martínez-Íñigo MJ, Martínez MJ, Martínez ÁT (2002) Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes. Appl Environ Microbiol 68:1344–1350CrossRefPubMedGoogle Scholar
  20. Jin J-M, Lee J, Lee Y-W (2010) Characterization of carotenoid biosynthetic genes in the ascomycete Gibberella zeae. FEMS Microbiol Lett 302:197–202CrossRefPubMedGoogle Scholar
  21. Kakumyan P, Matsui K (2009) Characterization of volatile compounds in Astraeus spp. Biosci Biotechnol Biochem 73:2742–2745CrossRefPubMedGoogle Scholar
  22. Kalač P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem 113:9–16CrossRefGoogle Scholar
  23. Keypour S, Rafati H, Riahi H, Mirzajani F, Moradali MF (2010) Qualitative analysis of ganoderic acids in Ganoderma lucidum from Iran and China by RP-HPLC and electrospray ionisation-mass spectrometry (ESI-MS). Food Chem 119:1704–1708CrossRefGoogle Scholar
  24. Kim HH, Cho S, Lee S, Kim KH, Cho KH, Eun HC, Chung JH (2006) Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo. J Lipid Res 47:921–930CrossRefPubMedGoogle Scholar
  25. Krištofíková L, Rosenberg M, Vlnová A, Šajbidor J, Čertík M (1991) Selection of Rhizopus strains for l(+)-lactic acid and γ-linolenic acid production. Folia Microbiol 36:451–455CrossRefGoogle Scholar
  26. Kumari M, Survase SA, Singhal RS (2008) Production of schizophyllan using Schizophyllum commune NRCM. Bioresour Technol 99:1036–1043CrossRefPubMedGoogle Scholar
  27. Lemann P (2007) Mushrooms in cosmetics. SpecialChem Cosmetics and Personal Care, Innovations and Solutions, February 2007Google Scholar
  28. Lourenço A, Lobo AM, Rodríguez B, Jimeno M-L (1996) Ceramides from the fungus Phellinus pini. Phytochemistry 43:617–620CrossRefGoogle Scholar
  29. Luiz RC, Jordao BQ, da Eira AF, Ribeiro LR, Mantovani MS (2003) Mechanism of anticlastogenicity of Agaricus blazei Murill mushroom organic extracts in wild type CHO (K-1) and repair deficient (xrs5) cells by chromosome aberration and sister chromatid exchange assays. Mutat Res Fundam Mol Mech Mutagen 528:75–79CrossRefGoogle Scholar
  30. Machado MP, Rodrigues E, Terezan AP, Ribeiro UR, Mantovani MS (2005) Cytotoxicity, genotoxicity and antimutagenicity of hexane extracts of Agaricus blazei determined in vitro by the comet assay and CHO/HGPRT gene mutation assay. Toxicol In Vitro 19:533–539CrossRefPubMedGoogle Scholar
  31. Mantzouridou F, Tsimidou MZ (2008) Lycopene formation in Blakeslea trispora. Chemical aspects of a bioprocess. Trends Food Sci Technol 19:363–371CrossRefGoogle Scholar
  32. Margolin AL, Klibanov AM (1987) Peptide-synthesis catalyzed by lipases in anhydrous organic-solvents. J Am Chem Soc 109:3802–3804CrossRefGoogle Scholar
  33. Matuo R, Oliveira RJ, Silva AF, Mantovani MS, Ribeiro LR (2007) Anticlastogenic activity of aqueous extract of Agaricus blazei in drug-metabolizing cells (HTCs) during cell cycle. Toxicol Mech Meth 17:147–152CrossRefGoogle Scholar
  34. Menoli R, Mantovani MS, Ribeiro LR, Speit G, Jordao BQ (2001) Antimutagenic effects of the mushroom Agaricus blazei Murrill extracts on V79 cells. Mutat Res Genet Toxicol Environ Mutagen 496:5–13CrossRefGoogle Scholar
  35. Mizuno T, Inagaki R, Kanao T, Hagiwara T, Nakamura T, Ito H, Shimura K, Sumiya T, Asakura A (1990) Studies on the host-mediated antitumor polysaccharides.14. Antitumor-activity and some properties of water-insoluble hetero-glycans from himematsutake, the fruiting body of Agaricus-blazei Murill. Agric Biol Chem 54:2897–2905Google Scholar
  36. Mizuno M, Minato K, Ito H, Kawade M, Terai H, Tsuchida H (1999) Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. Biochem Mol Biol Int 47:707–714PubMedGoogle Scholar
  37. Mohorčič M, Friedrich J, Renimel I, André P, Mandin D, Chaumont J-P (2007) Production of melanin bleaching enzyme of fungal origin and its application in cosmetics. Biotechnol Bioprocess Eng 12(3):200–206CrossRefGoogle Scholar
  38. Ng TB (2004) Peptides and proteins from fungi. Peptides 25:1055–1073CrossRefPubMedGoogle Scholar
  39. Nieto IJ, Carolina Chegwin A (2008) Triterpenoids and fatty acids identified in the edible mushroom Pleurotus sajor-cajú. J Chilean Chem Soc 53:1515–1517Google Scholar
  40. Obrien DJ, Stinson EE, Wessinger EW, Somkuti GA (1993) Production of eicosapentaenoic acid from filamentous fungi utilizing lactose as a primary carbon source. United States Patent 5246842Google Scholar
  41. Park S-S, Hwang S-M (1999) Purification and characterization of iron-containing superoxide dismutase from Lentinus edodes. J Microbiol Biotechnol 9:854–860Google Scholar
  42. Passi S, De Pità O, Puddu P, Littarru GP (2002) Lipophilic antioxidants in human sebum and aging. Free Radic Res 36:471–477CrossRefPubMedGoogle Scholar
  43. Pons A, Timmerman P, Leroy Y, Zanetta J-P (2002) Gas-chromatography/mass-spectrometry analysis of human skin constituents as heptafluorobutyrate derivatives with special reference to long-chain bases. J Lipid Res 43:794–804PubMedGoogle Scholar
  44. Sadruddin S, Arora R (2009) Resveratrol: Biologic and therapeutic implications. J Cardiometab Syndr 4:102–106CrossRefPubMedGoogle Scholar
  45. Sandewicz IM, Russ JG, Zhu VX (2003) Anhydrous cosmetic compositions containing mushroom extract United States Patent 6645502Google Scholar
  46. Sanodiya BS, Thakur GS, Baghel RK, Prasad GBKS, Bisen PS (2009) Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol 10:717–742CrossRefPubMedGoogle Scholar
  47. Shimada Y, Morita T, Sugiyama K (2002) Effects of Lentinus edodes on fatty acid and molecular species profiles of phosphatidylcholine in rats fed different levels of corn oilBioscience. Biotechnol Biochem 66:1759–1763CrossRefGoogle Scholar
  48. Synytsya A, Míčková K, Synytsya A, Jablonský I, Spěváček J, Erban V, Kováříková E, Čopíková J (2009) Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr Polym 76:548–556CrossRefGoogle Scholar
  49. Tian T, Sun Q, Shen J, Zhang T, Gao P, Sun Q (2008) Microbial transformation of polydatin and emodin-8-β-d-glucoside of Polygonum cuspidatum Sieb. et Zucc into resveratrol and emodin respectively by Rhizopus microsporus. World J Microbiol Biotechnol 24:861–866CrossRefGoogle Scholar
  50. Ventura J, Belmares R, Aguilera-Carbo A, Gutiérrez-Sanchez G, Rodríguez-Herrera R, Aguilar CN (2008) Fungal biodegradation of tannins from creosote bush (Larrea tridentata) and tar bush (Fluorensia cernua) for gallic and ellagic acid production. Food Technol Biotechnol 46:213–217Google Scholar
  51. Vozenin-Brotons MC, Sivan V, Gault N, Renard C, Geffrotin C, Delanian S, Lefaix JL, Martin M (2001) Antifibrotic action of Cu/Zn SOD is mediated by TGF-beta1 repression and phenotypic reversion of myofibroblasts. Free Radic Biolological Med 30:30–42CrossRefGoogle Scholar
  52. Vysotskaya MR, Maslova GV, Petrova VA, Nud'Ga LA (2009) Electrochemical recovery of chitin-glucan complex from Pleurotus ostreatus basidial fungus and properties of the product. Russ J Appl Chem 82:1390–1395CrossRefGoogle Scholar
  53. Wang H, Liu L, Guo Y-X, Dong Y-S, Zhang D-J, Xiu Z-L (2007) Biotransformation of piceid in Polygonum cuspidatum to resveratrol by Aspergillus oryzae. Appl Microbiol Biotechnol 75:763–768CrossRefPubMedGoogle Scholar
  54. Ward OP, Singh A (2005) Omega-3/6 fatty acids: Alternative sources of production. Process Biochem 40:3627–3652CrossRefGoogle Scholar
  55. Yabuta T (1924) The constitution of kojic acid, a gamma-pyrone derivative formed by Aspergillus oryzae from carbohydrates. J Chem Soc 125:575–587Google Scholar
  56. Yang FQ, Feng K, Zhao J, Li SP (2009) Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography-mass spectrometry. J Pharm Biomed Anal 49:1172–1178CrossRefPubMedGoogle Scholar
  57. Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35:251–263CrossRefGoogle Scholar
  58. Zulfakar MH, Edwards M, Heard CM (2007) Is there a role for topically delivered eicosapentaenoic acid in the treatment of psoriasis? Eur J Dermatol 17:284–291PubMedGoogle Scholar

Copyright information

© Kevin D. Hyde 2010

Authors and Affiliations

  1. 1.School of Science Mae Fah Luang UniversityChiang RaiThailand
  2. 2.Botany and Microbiology Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations