Sex Hormones and Cognition: Where Do We Stand?


Hypothalamic–pituitary–gonadal axis regulates the reproductive system. The overall health and wellbeing of a woman is subject to fluctuations in the sex hormones throughout her lifespan. Menopause, either natural or surgically induced, is often associated with cognitive complaints, especially memory disturbances. Sex hormones, besides affecting the reproductive function, affect the central nervous system in many ways. Here, we aim to review the role of sex hormones in cognition and the current evidence on use of or against menopausal hormonal therapy as a cognition enhancer in women with cognitive disturbances, including those with Alzheimer’s disease.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Gourie-Devi M. Epidemiology of neurological disorders in India: review of background, prevalence and incidence of epilepsy, stroke, Parkinson’s disease and tremors. Neurol India. 2014;62(6):588–98.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Banerjee TK, Dutta S, Das S, et al. Epidemiology of dementia and its burden in the city of Kolkata, India. Int J Geriatr Psychiatry. 2017;32(6):605–14.

    PubMed  Article  Google Scholar 

  3. 3.

    Dubey M, Ram U, Ram F. Threshold levels of infant and under-five mortality for crossover between life expectancies at ages zero, one and five in India: a decomposition analysis. PLoS ONE. 2015;10(12):e0143764.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Alzheimer’s NM. Disease: prototype of cognitive deterioration, valuable lessons to understand human cognition. Neurol Clin. 2016;34(1):69–131.

    Article  Google Scholar 

  5. 5.

    American Psychiatric Association. DSM-5: diagnostic and statistical manual of mental disorders, vol. 5. Washington, DC: American Psychiatric Association; 2013.

    Google Scholar 

  6. 6.

    Podcasy JL, Epperson CN. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci. 2016;18(4):437–46.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    GBD. Dementia collaborators global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2016;18(1):88–106.

    Google Scholar 

  8. 8.

    Hersi M, Irvine B, Gupta P, et al. Risk factors associated with the onset and progression of Alzheimer’s disease: a systematic review of the evidence. Neurotoxicology. 2017;2017(61):143–87.

    Article  Google Scholar 

  9. 9.

    Hickman RA, Faustin A, Alzheimer WT. disease and its growing epidemic: risk factors, biomarkers, and the urgent need for therapeutics. Neurol Clin. 2016;34(4):941–53.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Gliebus GP. Memory dysfunction continuum (MinneapMinn). Behav Neurol Psychiatry. 2018;24(3):727–44.

    Google Scholar 

  11. 11.

    Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7(3):137–52.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Bhattacharyya KB. James wenceslaus papez, his circuit, and emotion. Ann Indian Acad Neurol. 2017;20(3):207–10.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hamson DK, Roes MM, Galea LA. Sex hormones and cognition: neuroendocrine influences on memory and learning. Compr Physiol. 2016;6(3):1295–337.

    PubMed  Article  Google Scholar 

  14. 14.

    Palm R, Ayala-Fontanez N, Garcia Y, et al. Neuroendocrinology-based therapy for Alzheimer’s disease. BioFactors. 2012;38(2):123–32.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Vadakkadath Meethal S, Atwood CS. The role of hypothalamic-pituitary-gonadal hormones in the normal structure and functioning of the brain. Cell Mol Life Sci. 2005;62(3):257–70.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Gurvich C, Hoy K, Thomas N, et al. Sex differences and the influence of sex hormones on cognition through adulthood and the aging process. Brain Sci. 2018;8(9):E163.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Vogel JJ, Bowers CA, Vogel DS. Cerebral lateralization of spatial abilities: a meta-analysis. Brain Cogn. 2003;52(2):197–204.

    PubMed  Article  Google Scholar 

  18. 18.

    Yaffe K, Lui LY, Zmuda J, et al. Sex hormones and cognitive function in older men. J Am Geriatr Soc. 2002;50(4):707–12.

    PubMed  Article  Google Scholar 

  19. 19.

    LeBlanc ES, Wang PY, Janowsky JS, et al. Osteoporotic fractures in men (MrOS) research group. Association between sex steroids and cognition in elderly men. Clin Endocrinol (Oxf). 2010;72(3):393–403.

    CAS  Article  Google Scholar 

  20. 20.

    Roldán-Tapia MD, Cánovas R, León I, et al. Cognitive vulnerability in aging may be modulated by education and reserve in healthy people. Front Aging Neurosci. 2017;9:340.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Mitchell ES, Woods NF. Cognitive symptoms during the menopausal transition and early postmenopause. Climacteric. 2011;14(2):252–61.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Weber MT, Rubin LH, Maki PM. Cognition in perimenopause: the effect of transition stage. Menopause. 2013;20(5):511–7.

    PubMed  Google Scholar 

  23. 23.

    Resnick SM, Matsumoto AM, Stephens-Shields AJ, et al. Testosterone treatment and cognitive function in older men with low testosterone and age-associated memory impairment. JAMA. 2017;317(7):717–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Weber MT, Maki PM, McDermott MP. Cognition and mood in perimenopause: a systematic review and meta-analysis. J Steroid Biochem Mol Biol. 2014;2014(142):90–8.

    Article  CAS  Google Scholar 

  25. 25.

    Epperson CN, Sammel MD, Freeman EW. Menopause effects on verbal memory: findings from a longitudinal community cohort. J Clin Endocrinol Metab. 2013;98:3829–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Luine VN. Estradiol and cognitive function: past, present and future. Horm Behav. 2014;66(4):602–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Hara Y, Waters EM, McEwen BS, et al. Estrogen effects on cognitive and synaptic health over the life course. Physiol Rev. 2015;95(3):785–807.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Frankfurt M, Gould E, Woolley CS, et al. Gonadal steroids modify dendritic spine density in ventromedial hypothalamic neurons: a Golgi study in the adult rat. Neuroendocrinology. 1990;51(5):530–5.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Tuscher JJ, Luine V, Frankfurt M, et al. Estradiol-mediated spine changes in the dorsal hippocampus and medial prefrontal cortex of ovariectomized female mice depend on ERK and mTOR activation in the dorsal hippocampus. J Neurosci. 2016;36(5):1483–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Luine V. Estradiol: mediator of memories, spine density and cognitive resilience to stress in female rodents. J Steroid Biochem Mol Biol. 2016;2016(160):189–95.

    Article  CAS  Google Scholar 

  31. 31.

    Rossetti MF, Cambiasso MJ, Holschbach MA, et al. Oestrogens and progestagens: synthesis and action in the brain. J Neuroendocrinol. 2016.

    PubMed  Article  Google Scholar 

  32. 32.

    Engler-Chiurazzi EB, Singh M, Simpkins JW. From the 90′s to now: a brief historical perspective on more than two decades of estrogen neuroprotection. Brain Res. 2016;1633:96–100.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Singh M, Su C. Progesterone and neuroprotection. Horm Behav. 2013;63(2):284–90.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Goodman Y, Bruce AJ, Cheng B, et al. Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J Neurochem. 1996;66(5):1836–44.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Foy MR, Akopian G, Thompson RF. Progesterone regulation of synaptic transmission and plasticity in rodent hippocampus. Learn Mem. 2008;15(11):820–2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Prakapenka AV, Hiroi R, Quihuis AM, et al. Contrasting effects of individual versus combined estrogen and progestogen regimens as working memory load increases in middle-aged ovariectomized rats: one plus one does not equal two. Neurobiol Aging. 2018;2018(64):1–14.

    Article  CAS  Google Scholar 

  37. 37.

    Koebele SV, Bimonte-Nelson HA. The endocrine-brain-aging triad where many paths meet: female reproductive hormone changes at midlife and their influence on circuits important for learning and memory. Exp Gerontol. 2017;2017(94):14–23.

    Article  CAS  Google Scholar 

  38. 38.

    Taylor GT, Manzella FM, Huffman J, et al. Cognition in female rats after blocking conversion of androgens to estrogens. Horm Behav. 2017;2017(90):84–9.

    Article  CAS  Google Scholar 

  39. 39.

    Hara Y, Park CS, Janssen WG, et al. Synaptic correlates of memory and menopause in the hippocampal dentate gyrus in rhesus monkeys. Neurobiol Aging. 2012;33(2):421.e17–28.

    Article  Google Scholar 

  40. 40.

    Kurita K, Henderson VW, Gatz M, et al. Association of bilateral oophorectomy with cognitive function in healthy, postmenopausal women. Fertil Steril. 2016;106(3):749–56.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Amtul Z, Wang L, Westaway D, et al. Neuroprotective mechanism conferred by 17beta-estradiol on the biochemical basis of Alzheimer’s disease. Neuroscience. 2010;169(2):781–6.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Coker LH, Espeland MA, Rapp SR, et al. Postmenopausal hormone therapy and cognitive outcomes: the Women’s Health Initiative Memory Study (WHIMS). J Steroid Biochem Mol Biol. 2010;118(4–5):304–10.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Resnick SM, Coker LH, Maki PM, et al. The Women’s Health Initiative Study of Cognitive Aging (WHISCA): a randomized clinical trial of the effects of hormone therapy on age-associated cognitive decline. Clin Tr. 2004;1:440–50.

    Article  Google Scholar 

  44. 44.

    Anderson GL, Manson J, Wallace R, et al. Implementation of the Women’s Health Initiative study design. Ann Epidemiol. 2003;13:S5–17.

    PubMed  Article  Google Scholar 

  45. 45.

    Speth RC, D’Ambra M, Ji H, et al. A heartfelt message, estrogen replacement therapy: use it or lose it. Am J Physiol Heart Circ Physiol. 2018.

    PubMed  Article  Google Scholar 

  46. 46.

    Lobo RA. Where are we 10 years after the Women’s health initiative? J Clin Endocrinol Metab. 2013;98(5):1771–80.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Imtiaz B, Tuppurainen M, Rikkonen T, et al. Postmenopausal hormone therapy and Alzheimer disease: a prospective cohort study. Neurology. 2017;88(11):1062–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Maki PM, Henderson VW. Hormone therapy, dementia, and cognition: the Women’s Health Initiative 10 years on. Climacteric. 2012;15(3):256–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Resnick SM, Espeland MA, Jaramillo SA, et al. Postmenopausal hormone therapy and regional brain volumes: the WHIMS-MRI study. Neurology. 2009;72(2):135–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Laws KR, Irvine K, Gale TM. Sex differences in Alzheimer’s disease. Curr Opin Psychiatry. 2018;31(2):133–9.

    PubMed  Article  Google Scholar 

  51. 51.

    Maki PM. Critical window hypothesis of hormone therapy and cognition: a scientific update on clinical studies. Menopause. 2013;20(6):695–709.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Tschanz JT, Norton MC, Zandi PP, et al. The cache county study on memory in aging: factors affecting risk of Alzheimer’s disease and its progression after onset. Int Rev Psychiatry. 2013;25(6):673–85.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Imtiaz B, TolppanenAM SA, Soininen H, et al. Estradiol and cognition in the cardiovascular risk factors, aging and dementia (CAIDE) cohort study. J Alzheimers Dis. 2017;56(2):453–8.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Marder K, Tang MX, Alfaro B, et al. Postmenopausal estrogen use and Parkinson’s disease with and without dementia. Neurology. 1998;50(4):1141–3.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Rocca WA, Grossardt BR, Shuster LT. Oophorectomy, estrogen, and dementia: a 2014 update. Mol Cell Endocrinol. 2014;389(1–2):7–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Rocca WA, Bower JH, Maraganore DM, et al. Melton LJ 3rd Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology. 2007;69(11):1074–83.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Phung TK, Waltoft BL, Laursen TM, et al. Hysterectomy, oophorectomy and risk of dementia: a nationwide historical cohort study. Dement Geriatr Cogn Disord. 2010;30(1):43–50.

    PubMed  Article  Google Scholar 

  58. 58.

    Bove R, Secor E, Chibnik LB, et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology. 2014;82(3):222–9.

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Espeland MA, Rapp SR, Manson JE, et al. WHIMSY and WHIMS-ECHO study groups long-term effects on cognitive trajectories of postmenopausal hormone therapy in two age groups. J Gerontol A Biol Sci Med Sci. 2017;72(6):838–45.

    PubMed  Google Scholar 

  60. 60.

    Gleason CE, Dowling NM, Wharton W, et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the randomized, controlled KEEPS-cognitive and affective study. PLoS Med. 2015;12(6):e1001833.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Henderson VW, St John JA, Hodis HN, et al. Cognitive effects of estradiol after menopause: a randomized trial of the timing hypothesis. Neurology. 2016;87(7):699–708.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Mielke MM, Vemuri P, Rocca WA. Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clin Epidemiol. 2014;2014(6):37–48.

    Article  Google Scholar 

  63. 63.

    Whitmer RA, Quesenberry CP, Zhou J, et al. Timing of hormone therapy and dementia: the critical window theory revisited. Ann Neurol. 2011;69(1):163–9.

    PubMed  Article  Google Scholar 

  64. 64.

    Cobin RH, Goodman NF. AACE reproductive endocrinology scientific committee. American association of clinical endocrinologists and American college of endocrinology position statement on menopause-2017 update. Endocr Pract. 2017;23(7):869–80.

    PubMed  Article  Google Scholar 

  65. 65.

    Maki PM. Minireview: effects of different HT formulations on cognition. Endocrinology. 2012;153(8):3564–70.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Davis SR, Wahlin-Jacobsen S. Testosterone in women–the clinical significance. Lancet Diabetes Endocrinol. 2015;3(12):980–92.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Henderson VW, Ala T, Sainani KL, et al. Raloxifene for women with Alzheimer disease: a randomized controlled pilot trial. Neurology. 2015;85(22):1937–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Yang ZD, Yu J, Zhang Q. Effects of raloxifene on cognition, mental health, sleep and sexual function in menopausal women: a systematic review of randomized controlled trials. Maturitas. 2013;75(4):341–8.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    The NAMS. Hormone therapy position statement advisory panel. The 2017 hormone therapy position statement of The North American Menopause Society. Menopause. 2017;24(7):728–53.

    Article  Google Scholar 

  70. 70.

    Pines A. Alzheimer’s disease, menopause and the impact of the estrogenic environment. Climacteric. 2016;19(5):430–2.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information




SVK and VAP were involved in literature research, manuscript preparation, manuscript editing and revision. Both the authors have read the manuscript and approved the final version.

Corresponding author

Correspondence to Satish V. Khadilkar MD, DM, DNBE, FIAN, FICP, FAMS, FRCP (London).

Ethics declarations

Conflict of interest

Both the authors declare that they do not have any conflict of interest.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dr Satish V. Khadilkar is presently the Dean and Professor and Head at the Department Neurology at the Bombay Hospital Institute of Medical Sciences, Mumbai. Dr Varsha A. Patil is Clinical Associate, Neurology at Department Neurology at the Bombay Hospital Institute of Medical Sciences, Mumbai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khadilkar, S.V., Patil, V.A. Sex Hormones and Cognition: Where Do We Stand?. J Obstet Gynecol India 69, 303–312 (2019).

Download citation


  • Alzheimer’s disease
  • Cognition
  • Dementia
  • Estrogen
  • Estradiol
  • Hormone therapy
  • Menopausal hormonal therapy
  • Memory
  • Sex hormones