Analyzing Temporal Graphs with Gradoop

Abstract

The temporal analysis of evolving graphs is an important requirement in many domains but hardly supported in current graph database and graph processing systems. We therefore have started with extending the distributed graph analysis framework Gradoop for temporal graph analysis by adding time properties to vertices, edges and graphs and using them within graph operators. We outline these extensions and illustrate their use within analysis workflows. We further describe the implementation of the snapshot and diff operators and evaluated them.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    https://flink.apache.org/

  2. 2.

    https://neo4j.com/developer/cypher-query-language/

References

  1. 1.

    Cheng R et al (2012) Kineograph: taking the pulse of a fast-changing and connected world. Proc EuroSys:85–98. https://doi.org/10.1145/2168836.2168846

    Article  Google Scholar 

  2. 2.

    Date CJ, Darwen H, Lorentzos N (2002) Temporal data & the relational model. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA

    Google Scholar 

  3. 3.

    Erling O, Averbuch A, Larriba-Pey J, Chafi H, Gubichev A, Prat A, Pham MD, Boncz P (2015) The LDBC social network benchmark: Interactive workload. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, New York, pp 619–630. https://doi.org/10.1145/2723372.2742786

    Google Scholar 

  4. 4.

    Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125. https://doi.org/10.1016/j.physrep.2012.03.001

    Article  Google Scholar 

  5. 5.

    Junghanns M, Kießling M, Teichmann N, Gómez K, Petermann A, Rahm E (2018) Declarative and distributed graph analytics with GRADOOP. Proc VLDB Endow 11(12):2006–2009

    Article  Google Scholar 

  6. 6.

    Junghanns M, Petermann A, Neumann M, Rahm E (2017) Management and analysis of big graph data: current systems and open challenges. In: Handbook of big data technologies. Springer, Cham, pp 457–505

    Google Scholar 

  7. 7.

    Junghanns M, Petermann A, Rahm E (2017) Distributed grouping of property graphs with GRADOOP. Proc BTW, P-265:103–122

    Google Scholar 

  8. 8.

    Junghanns M, Petermann A, Teichmann N, Gómez K, Rahm E (2016) Analyzing extended property graphs with Apache Flink. In: Proc. SIGMOD Workshop on Network Data Analytics

    Google Scholar 

  9. 9.

    Khurana U, Deshpande A (2013) Efficient snapshot retrieval over historical graph data. Proc ICDE, 997–1008. https://doi.org/10.1109/icde.2013.6544892

    Article  Google Scholar 

  10. 10.

    Kulkarni K, Michels J (2012) Temporal features in SQL: 2011. SIGMOD Rec 41(3):34–43

    Article  Google Scholar 

  11. 11.

    Ligtenberg W, Pei Y, Fletcher G, Pechenizkiy M (2018) Tink: A temporal graph analytics library for Apache Flink. In: WWW ’18 Companion Proceedings of the The Web Conference 2018, pp 71–72. https://doi.org/10.1145/3184558.3186934

    Google Scholar 

  12. 12.

    Miao Y et al (2015) Immortalgraph: a system for storage and analysis of temporal graphs. ACM Trans Storage 11(3):14

    Article  Google Scholar 

  13. 13.

    Pigné Y, Dutot A, Guinand F, Olivier D (2008) Graphstream: A tool for bridging the gap between complex systems and dynamic graphs. CoRR

    Google Scholar 

  14. 14.

    Rost C, Thor A, Rahm E (2019) Temporal graph analysis using gradoop. In: BTW 2019 - Workshopband. Lecture Notes in Informatics (LNI), vol P‑290. Gesellschaft für Informatik, Bonn, pp 109–118

    Google Scholar 

  15. 15.

    Steer BA, Cuadrado F, Clegg RG (2020) Raphtory: Streaming analysis of distributed temporal graphs. Future Generation Computer Systems 102:453–464. https://doi.org/10.1016/j.future.2019.08.022

    Article  Google Scholar 

  16. 16.

    Then M, Kersten T, Günnemann S, Kemper A, Neumann T (2017) Automatic algorithm transformation for efficient multi-snapshot analytics on temporal graphs. Proc VLDB Endow 10(8):877–888

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the German Federal Ministry of Education and Research under grant BMBF 01IS18026B and by Sächsische Aufbau Bank (SAB) and the European Regional Development (EFRE) under grant No. 100302179.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher Rost.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rost, C., Thor, A. & Rahm, E. Analyzing Temporal Graphs with Gradoop. Datenbank Spektrum 19, 199–208 (2019). https://doi.org/10.1007/s13222-019-00325-8

Download citation

Keywords

  • Temporal Property Graph
  • Temporal Graph Data Model
  • Evolving Graph Analysis