Skip to main content
Log in

Transforming Heterogeneous Data into Knowledge for Personalized Treatments—A Use Case

  • Schwerpunktbeitrag
  • Published:
Datenbank-Spektrum Aims and scope Submit manuscript

Abstract

Big data has exponentially grown in the last decade; it is expected to grow at a faster rate in the next years as a result of the advances in the technologies for data generation and ingestion. For instance, in the biomedical domain, a wide variety of methods are available for data ingestion, e.g., liquid biopsies and medical imaging, and the collected data can be represented using myriad formats, e.g., FASTQ and Nifti. In order to extract and manage valuable knowledge and insights from big data, the problem of data integration from structured and unstructured data needs to be effectively solved. In this paper, we devise a knowledge-driven approach able to transform disparate data into knowledge from which actions can be taken. The proposed framework resorts to computational extraction methods for mining knowledge from data sources, e.g., clinical notes, images, or scientific publications. Moreover, controlled vocabularies are utilized to annotate entities and a unified schema describes the meaning of these entities in a knowledge graph; entity linking methods discover links to existing knowledge graphs, e.g., DBpedia and Bio2RDF. A federated query engine enables the exploration of the linked knowledge graphs while knowledge discovery methods allow for uncovering patterns in the knowledge graphs. The proposed framework is used in the context of the EU H2020 funded project iASiS with the aim of paving the way for accurate diagnostics and personalized treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://project-iasis.eu/.

  2. https://labs.tib.eu/info/en/project/falcon/.

  3. https://github.com/SDM-TIB/KG-Tools.

  4. https://www.ncbi.nlm.nih.gov/pubmed/.

  5. https://cancer.sanger.ac.uk/cosmic.

  6. http://dbpedia.org/resource/Paclitaxel.

  7. http://bio2rdf.org/drugbank:DB01229.

  8. https://www.ncbi.nlm.nih.gov/pubmed/.

  9. https://metamap.nlm.nih.gov/.

  10. https://semrep.nlm.nih.gov/.

  11. https://cancer.sanger.ac.uk/cosmic.

  12. https://www.drugbank.ca/.

  13. http://sideeffects.embl.de/.

  14. http://stitch.embl.de/.

  15. http://dbpedia.org/page/Paclitaxel.

  16. The ten knowledge graphs have 133,873,127 RDF triples.

  17. http://www.genome.jp/tools/simcomp/.

  18. https://sourceforge.net/projects/hposim/.

  19. http://www.d.umn.edu/~tpederse/umls-similarity.html.

References

  1. Acosta M, Vidal M, Lampo T, Castillo J, Ruckhaus E (2011) ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Proceedings of the 10th International Conference on The Semantic Web ISWC Bonn, 23.10.-27.10., pp 18–34 https://doi.org/10.1007/978-3-642-25073-6_2

    Chapter  Google Scholar 

  2. Acosta M, Simperl E, Flöck F, Vidal M (2017a) Enhancing answer completeness of SPARQL queries via crowdsourcing. J Web Semant 45:41–62

    Article  Google Scholar 

  3. Acosta M, Vidal M, Sure-Vetter Y (2017b) Diefficiency metrics: measuring the continuous efficiency of query processing approaches. In: The Semantic Web – ISWC 2017 – 16th International Semantic Web Conference

    Google Scholar 

  4. Acosta M, Zaveri A, Simperl E, Kontokostas D, Flöck F, Lehmann J (2018) Detecting linked data quality issues via crowdsourcing: a dbpedia study. Semant Web 9(3):303–335

    Article  Google Scholar 

  5. Agerri R, Artola X, Beloki Z, Rigau G, Soroa A (2015) Big data for natural language processing: a streaming approach. Knowl Based Syst 79:36–42

    Article  Google Scholar 

  6. Schulz A, Matteini A, Isele R, Mendes PM, Bizer C, Becker C (2012) Ldif- a framework for large-scale linked data integration. In: Proceedings of the 21st International World Wide Web Conference WWW, Developers Track Lyon, 16.04.-20.04.

    Google Scholar 

  7. Angles R, Arenas M, Barceló P, Hogan A, Reutter JL, Vrgoc D (2017) Foundations of modern query languages for graph databases. ACM Comput Surv 50(5):68:1–68:40

    Article  Google Scholar 

  8. Ceri S, Gottlob G, Tanca L (1989) What you always wanted to know about datalog (and never dared to ask). IEEE Trans Knowl Data Eng 1(1):146–166

    Article  Google Scholar 

  9. Cheatham M, Cruz IF, Euzenat J, Pesquita C (2017) Special issue on ontology and linked data matching. Semant Web 8(2):183–184

    Article  Google Scholar 

  10. Collarana D, Galkin M, Ribón IT, Vidal M, Lange C, Auer S (2017) MINTE: semantically integrating RDF graphs. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, WIMS 2017 Amantea, 19.06.-22.06.. https://doi.org/10.1145/3102254.3102280

    Chapter  Google Scholar 

  11. Collarana D, Galkin M, Lange C, Scerri S, Auer S, Vidal M (2018) Synthesizing knowledge graphs from web sources with the MINTE++ framework. In: The Semantic Web – ISWC 2018 – 17th International Semantic Web Conference

    Google Scholar 

  12. Cruz AL, Baranya A, Vidal M (2012) Medical image rendering and description driven by semantic annotations. In: Resource Discovery – 5th International Workshop, RED 2012, Co-located with the 9th Extended Semantic Web Conference, ESWC 2012 Heraklion, 27.05.2012, pp 123–149 (Revised Selected Papers)

    Google Scholar 

  13. Daiber J, Jakob M, Hokamp C, Mendes PN (2013) Improving efficiency and accuracy in multilingual entity extraction. In: I‑SEMANTICS 2013 – 9th International Conference on Semantic Systems, ISEM ’13 Graz, 04.09.‑06.09., pp 121–124

    Google Scholar 

  14. Dimou A, Sande MV, Colpaert P, Verborgh R, Mannens E, de Walle RV (2014) RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the Workshop on Linked Data on the Web co-located with the 23rd International World Wide Web Conference (WWW 2014)

    Google Scholar 

  15. Doan AH, Halevy AY, Ives ZG (2012) Principles of Data Integration. Morgan Kaufmann, ISBN 978-0-12-416044-6, pp I–XVIII, 1–497

  16. Endris KM, Galkin M, Lytra I, Mami MN, Vidal M, Auer S (2018) Querying interlinked data by bridging RDF molecule templates. T Large Scale Data Knowl Cent Syst 39:1–42

    Google Scholar 

  17. Euzenat J, Shvaiko P (2013) Ontology matching, 2nd edn. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  18. Galkin M, Collarana D, Ribón IT, Vidal M, Auer S (2017) Sjoin: A semantic join operator to integrate heterogeneous RDF graphs. In: Database and Expert Systems Applications – 28th International Conference, DEXA 2017 Lyon, 28.08.-31.08., pp 206–221 (Proceedings, Part I)

    Google Scholar 

  19. Gawriljuk G, Harth A, Knoblock CA, Szekely PA (2016) A scalable approach to incrementally building knowledge graphs. In: Research and Advanced Technology for Digital Libraries – 20th International Conference on Theory and Practice of Digital Libraries, TPDL 2016 Hannover, 05.09.‑09.09., pp 188–199 (Proceedings)

    Google Scholar 

  20. Getoor L (2013) Probabilistic soft logic: a scalable approach for markov random fields over continuous-valued variables – (abstract of keynote talk). In: Theory, Practice, and Applications of Rules on the Web – 7th International Symposium, RuleML 2013 Seattle, 11.07.-13.07., p 1 (Proceedings)

    Google Scholar 

  21. Golshan B, Halevy AY, Mihaila GA, Tan W (2017) Data integration: after the teenage years. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017 Chicago, 14.05.-19.05., pp 101–106

    Chapter  Google Scholar 

  22. Halevy AY (2017) Technical perspective: building knowledge bases from messy data. Commun ACM 60(5):92

    Article  Google Scholar 

  23. Halevy AY (2018) Information integration. In: Encyclopedia of Database Systems, 2nd edn.

    Google Scholar 

  24. Halevy AY, Rajaraman A, Ordille JJ (2006) Data integration: the teenage years. In: Proceedings of the 32nd International Conference on Very Large Data Bases Seoul, 12.09.-15.09., pp 9–16

    Google Scholar 

  25. Hasnain A, Mehmood Q, Sana E, Zainab S, Saleem M, Warren C, Zehra D, Decker S, Rebholz-Schuhmann D (2017) Biofed: federated query processing over life sciences linked open data. J Biomed Semantics 8(1):13

    Article  Google Scholar 

  26. Hassanzadeh O, Chiang F, Miller RJ, Lee HC (2009) Framework for evaluating clustering algorithms in duplicate detection. Proceedings VLDB Endowment 2(1):1282–1293

    Article  Google Scholar 

  27. Henning CA, Ewerth R (2018) Estimating the information gap between textual and visual representations. Int J Multimed Inf Retr 7(1):43–56

    Article  Google Scholar 

  28. Hu W, Qiu H, Huang J, Dumontier M (2017) Biosearch: a semantic search engine for bio2rdf. Database. https://doi.org/10.1093/database/bax059

    Article  Google Scholar 

  29. Isele R, Bizer C (2013) Active learning of expressive linkage rules using genetic programming. J Web Semant 23:2–15. https://doi.org/10.1016/j.websem.2013.06.001

    Article  Google Scholar 

  30. Klimchuk OI, Konovalov KA, Perekhvatov VV, Skulachev KV, Dibrova DV, Mulkidjanian AY (2017) Cognat: a web server for comparative analysis of genomic neighborhoods. Biol Direct. https://doi.org/10.1186/s13062-017-0196-z

    Article  Google Scholar 

  31. Knoblock CA, Szekely PA (2015) Exploiting semantics for big data integration. AI Mag 36(1):25–38

    Article  Google Scholar 

  32. Lenzerini M (2002) Data Integration: a theoretical perspective. In: Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems Madison, 03.06.‑05.06., pp 233–246

    Chapter  Google Scholar 

  33. Libkin L, Reutter JL, Soto A, Vrgoc D (2018) TriAL: A navigational algebra for RDF triplestores. Acm Trans Database Syst 43(1):5:1–5:46

    Article  MathSciNet  Google Scholar 

  34. Livi CM, Klus P, Delli Ponti R, Tartaglia GG (2016) catrapid signature: identification of ribonucleoproteins and rna-binding regions. Bioinformatics 32(5):773–775. https://doi.org/10.1093/bioinformatics/btv629

    Article  Google Scholar 

  35. Loster M, Naumann F, Ehmueller J, Feldmann B (2018) Curex: a system for extracting, curating, and exploring domain-specific knowledge graphs from text. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018 Torino, 22.10.-26.10.

    Google Scholar 

  36. Menasalvas E, González AR, Costumero R, Ambit H, Gonzalo C (2016) Clinical narrative analytics challenges. In: Rough Sets – International Joint Conference, IJCRS 2016 Santiago de Chile, 07.10.‑11.10., pp 23–32 (Proceedings)

    Google Scholar 

  37. Mendes PN, Mühleisen H, Bizer C (2012) Sieve: linked data quality assessment and fusion. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops Berlin, 30.03., pp 116–123

    Chapter  Google Scholar 

  38. Ross MK, Wei W, Ohno-Machado L (2014) Big data and the electronic health record. IMIA yearbook of medical Informatics, vol 1

    Google Scholar 

  39. Mohammadi M, Atashin AA, Hofman W, Tan Y (2018) Comparison of ontology alignment systems across single matching task via the mcNemar’s test. TKDD 12(4):51:1–51:18

    Google Scholar 

  40. Munevar S (2017) Unlocking big data for better health. Nat Biotechnol 35(7):684–686. https://doi.org/10.1038/nbt.3918

    Article  Google Scholar 

  41. Navigli R (2018) Natural language understanding: instructions for (present and future) use. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018 Stockholm, 13.07.-19.07., pp 5697–5702

    Google Scholar 

  42. Nentidis A, Bougiatiotis K, Krithara A, Paliouras G (2018) Semantic integration of disease-specific knowledge. In: Poster in European Conference on Computational Biology (ECCB18)

    Google Scholar 

  43. Ngomo ACN, Auer S (2011) Limes-a time-efficient approach for large-scale link discovery on the web of data. In: IJCAI, pp 2312–2317

    Google Scholar 

  44. Ortiz CA, Gonzalo-Martín C, Garcia-Pedrero A, Ruiz EM (2018) Supervoxels-based histon as a new alzheimer’s disease imaging biomarker. Sensors 18(6):1752

    Article  Google Scholar 

  45. Palma G, Vidal M, Raschid L (2014) Drug-target interaction prediction using semantic similarity and edge partitioning. In: ISWC

    Google Scholar 

  46. Papachristou N, Puschmann D, Barnaghi P, Cooper B, Hu X, Maguire R, Apostolidis K, Conley YP, Hammer M, Katsaragakis S, Kober KM, Levine JD, McCann L, Patiraki E, Furlong EP, Fox PA, Paul SM, Ream E, Wright F, Miaskowski C (2018) Learning from data to predict future symptoms of oncology patients. PLoS ONE. https://doi.org/10.1371/journal.pone.0208808

    Article  Google Scholar 

  47. Perez W, Tello A, Saquicela V, Vidal M, Cruz AL (2015) An automatic method for the enrichment of DICOM metadata using biomedical ontologies. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 Milan, 25.08.-29.08., pp 2551–2554

    Google Scholar 

  48. Priyatna F, Corcho Ó, Sequeda JF (2014) Formalisation and experiences of R2RML-based SPARQL to SQL query translation using morph. In: 23rd International World Wide Web Conference, WWW ’14 Seoul, 07.04.–11.04., pp 479–490

    Google Scholar 

  49. Ristoski P, Bizer C, Paulheim H (2015) Mining the web of linked data with rapidminer. Web Semant 35:142–151

    Article  Google Scholar 

  50. Ruiz EM, Tuñas JM, Bermejo G, Gonzalo-Martín C, González AR, Zanin M, de Pedro CG, Mendez M, Zaretskaia O, Rey J, Parejo C, Bermudez JLC, Provencio M (2018) Profiling lung cancer patients using electronic health records. J Med Syst 42(7):126:1–126:10

    Google Scholar 

  51. Sakor A, Mulang’ IO, Singh K, Shekarpour S, Vidal ME, Lehmann J, Auer S (2019) Old is gold: linguistic driven approach for entity and relation linking of short text. In: Proceedings of the NAACL HLT

    Google Scholar 

  52. Sequeda JF, Arenas M, Miranker DP (2014) OBDA: query rewriting or materialization? in practice, both! In: The Semantic Web – ISWC 2014 – 13th International Semantic Web Conference Riva del Garda, 19.10.-23.10., pp 535–551 (Proceedings, Part I)

    Chapter  Google Scholar 

  53. Tukiainen T (2017) Landscape of x chromosome inactivation across human tissues. Nature. https://doi.org/10.1038/nature24265

    Article  Google Scholar 

  54. Wiederhold G (1992) Mediators in the architecture of future information systems. IEEE Comput 25(3):38–49

    Article  Google Scholar 

  55. Zadorozhny V, Raschid L, Vidal M, Urhan T, Bright L (2002) Efficient evaluation of queries in a mediator for websources. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data Madison, 03.06.‑06.06., pp 85–96

    Chapter  Google Scholar 

  56. Zhong RY, Newman ST, Huang GQ, Lan S (2016) Big data for supply chain management in the service and manufacturing sectors: challenges, opportunities, and future perspectives. Comput Ind Eng 101:572–591

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the EU H2020 Project No. 727658 (IASIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Esther Vidal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, ME., Endris, K.M., Jazashoori, S. et al. Transforming Heterogeneous Data into Knowledge for Personalized Treatments—A Use Case. Datenbank Spektrum 19, 95–106 (2019). https://doi.org/10.1007/s13222-019-00312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13222-019-00312-z

Navigation