Skip to main content

Large-Scale Time Series Analytics

Novel Approaches for Generation and Prediction


More and more data is gathered every day and time series are a major part of it. Due to the usefulness of this type of data, it is analyzed in many application domains. While there already exists a broad variety of methods for this task, there is still a lack of approaches that address new requirements brought up by large-scale time series data like cross-domain usage or compensation of missing data. In this paper, we address these issues, by presenting novel approaches for generating and forecasting large-scale time series data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Aldrin M, Damsleth E (1989) Forecasting non-seasonal time series with missing observations. J Forecast 8(2):97–116

    Article  Google Scholar 

  2. Bilbao J, de Miguel AH, Kambezidis HD (2002) Air temperature model evaluation in the north mediterranean belt area. J Appl Meteorol 41(8):872–884

    Article  Google Scholar 

  3. Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: forecasting and control. Wiley, Oxford

    Book  MATH  Google Scholar 

  4. Chatfield C (2000) Time-series forecasting. Chapman & Hall, CRC, New York. ISBN: 9781584880639

    Book  Google Scholar 

  5. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6(1):3–73

    Google Scholar 

  6. Cuddihy MA, Drummond JB Jr., Bourquin DJ (1994) Vehicle crash data generator. US patent/grant: US5608629A

  7. Forestier G, Petitjean F, Dau HA, Webb GI, Keogh E (2017) Generating synthetic time series to augment sparse datasets. Proc ICDM.

    Google Scholar 

  8. Hartmann C, Hahmann M, Habich D, Lehner W (2017) CSAR: the cross-sectional Autoregression model. Proc DSAA.

    Google Scholar 

  9. Hartmann C, Hahmann M, Rosenthal F, Lehner W (2015) Exploiting big data in time series forecasting: a cross-sectional approach. Proc DSAA.

    Google Scholar 

  10. Hyndman RJ, Khandakar Y (2008) Automatic time series for forecasting: the forecast package for R. J Stat Softw.

    Google Scholar 

  11. Iftikhar N, Liu X, Danalachi S, Nordbjerg FE, Vollesen JH (2017) A Scalable Smart Meter Data Generator Using Spark. OTM.

    Google Scholar 

  12. IJCAI (2017) IJCAI 2017 – Data Mining Contest. Accessed 08.02.

    Google Scholar 

  13. Jones DI, Lorenz MH (1986) An application of a Markov chain noise model to wind generator simulation. Math Comput Simul 28(5):391–402

    Article  Google Scholar 

  14. Kaminsky FC, Kirchhoff RH, Syu CY, Manwell JF (1991) A comparison of alternative approaches for the synthetic generation of a wind speed time series. J Sol Energy Eng 113(4):280–289

    Article  Google Scholar 

  15. Kang Y, Hyndman RJ, Smith-Miles K (2017) Visualising forecasting algorithm performance using time series instance spaces. Int J Forecast 33(2):345–358

    Article  Google Scholar 

  16. Kegel L, Hahmann M, Lehner W (2017) Feature-driven time series generation. Proc 29th GvDB Workshop, p. 54–59

  17. Kegel L, Hahmann M, Lehner W (2017) Generating what-if scenarios for time series data. Proc SSDB.

    Google Scholar 

  18. Kegel L, Hahmann M, Lehner W (2018) Feature-based comparison and generation of time series. Prof SSDBM.

    Google Scholar 

  19. Makridakis S, Hibon M (2000) The M3-Competition: results, conclusions and implications. Int J Forecast 16(4):451–476

    Article  Google Scholar 

  20. Müller H, Haberlandt U (2015) Temporal rainfall disaggregation with a cascade model: from single-station disaggregation to spatial rainfall. J Hydrol Eng.

    Google Scholar 

  21. Neupane B, Pedersen TB, Thiesson B (2014) Towards flexibility detection in device-level energy consumption. Workshop Proc ECML PKDD.

    Google Scholar 

  22. van Paassen AHC, Luo QX (2002) Weather data generator to study climate change on buildings. Build Serv Eng Res Technol 23(4):251–258

    Article  Google Scholar 

  23. Pesch T, Schröders S, Allelein HJ, Hake JF (2015) A new Markov-chain-related statistical approach for modelling synthetic wind power time series. New J Phys.

    Google Scholar 

  24. R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  25. Rahm E, Nagel WE, Peukert E, Jaekel R, Gaertner F, Stadler PF, Wiegreffe D, Zeckzer D, Lehner W (2019) Competence center ScaDS Dresden/leipzig: overview and selected research activities. Datenbank Spektrum 19(1)

  26. Schaffner J, Januschowski T (2013) Realistic tenant traces for enterprise DBaaS. Work Proc ICDE.

    Google Scholar 

  27. The Commission for Energy Regulation (2015) CER smart metering project. Accessed 18.12.2017

    Google Scholar 

  28. VDE e.V. (2011) Messwesen Strom (Metering Code); VDE-AR‑N 4400

Download references


This work was funded by the German Federal Ministry of Education and Research within the project Competence Center for Scalable Data Services and Solutions Phase 1—ScaDS Dresden/Leipzig (BMBF 01IS14014A).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Claudio Hartmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hahmann, M., Hartmann, C., Kegel, L. et al. Large-Scale Time Series Analytics. Datenbank Spektrum 19, 17–29 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Data analytics
  • Time series generation
  • Time series forecasting
  • Big Data