Skip to main content

JEPC: The Java Event Processing Connectivity

Zusammenfassung

Today, event processing (EP) is the first choice technology for analyzing massive event streams in a timely manner. EP allows to detect user-defined situations of interest, like in streaming position events for example, in near real-time such that actions can be taken immediately. Unfortunately, each specific EP system has its very own API and query language because there are no standards. The exchange of EP systems as well as their use within a federation is challenging, error-prone, and expensive. To overcome these problems, we introduce the Java Event Processing Connectivity (JEPC) that is a middleware for uniform EP functionality in Java. JEPC provides always the same API and query language for EP completely independent of the EP system beneath. Furthermore, we show in detail how JEPC can integrate database systems besides EP systems and evaluate the performance of EP powered by databases systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Listing 1
Listing 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Appelrath H, Geesen D, Grawunder M, Michelsen T, Nicklas D (2012) Odysseus—a highly customizable framework for creating efficient event stream management systems. In: DEBS, pp 367–368

    Chapter  Google Scholar 

  2. Arasu A, Babu S, Widom J (2006) The CQL continuous query language: semantic foundations and query execution. VLDB J 15(2):121–142

    Article  Google Scholar 

  3. Babu S, Widom J (2001) Continuous queries over data streams. SIGMOD Rec 30(3):109–120

    Article  Google Scholar 

  4. Blakeley J, Larson P, Tompa F (1986) Efficiently updating materialized views. In: SIGMOD, pp 61–71

    Google Scholar 

  5. Cugola G, Margara A (2012) Processing flows of information: from data stream to complex event processing. ACM Comput Surv 44(3):15:1–15:62

    Article  Google Scholar 

  6. Dayal U, Goodman N, Katz R (1982) An extended relational algebra with control over duplicate elimination. In: PODS, pp 117–123

    Google Scholar 

  7. Demers A, Gehrke J, Panda B, Riedewald M, Sharma V, White W (2007) Cayuga: a general purpose event monitoring system. In: CIDR, pp 412–422

    Google Scholar 

  8. Dindar N, Tatbul N, Miller R, Haas L, Botan I (2013) Modeling the execution semantics of stream processing engines with SECRET. VLDB J 22(4):421–446

    Article  Google Scholar 

  9. Ding L, Rundensteiner E (2004) Evaluating window joins over punctuated streams. In: CIKM, pp 98–107

    Chapter  Google Scholar 

  10. Eckert M, Bry F (2009) Complex event processing (CEP). Inform-Spektrum 32(2):163–167

    Article  Google Scholar 

  11. Esper (2013) http://esper.codehaus.org/

  12. Glombiewski N, Hoßbach B, Morgen A, Ritter F, Seeger B (2013) Event processing on your own database. In: BTW workshops, pp 33–42

    Google Scholar 

  13. H2 Database Engine (2013) http://www.h2database.com/

  14. Hirte S, Schubert E, Seifert A, Baumann S, Klan D, Sattler K (2012) Data3—a kinect interface for OLAP using complex event processing. In: ICDE, pp 1297–1300

    Google Scholar 

  15. Hoßbach B, Seeger B (2013) Anomaly management using complex event processing. In: EDBT, pp 149–154

    Chapter  Google Scholar 

  16. Hoßbach B, Freisleben B, Seeger B (2012) Reaktives cloud monitoring mit complex event processing. Datenbank Spektrum 12(1):33–42

    Article  Google Scholar 

  17. Jain N et al. (2008) Towards a streaming SQL standard. PVLDB 1(2):1379–1390

    Google Scholar 

  18. Java Event Processing Connectivity (2013) http://dbs.mathematik.uni-marburg.de/research/projects/jepc/

  19. Krämer J, Seeger B (2009) Semantics and implementation of continuous sliding window queries over data streams. TODS 34(1):4:1–4:49

    Article  Google Scholar 

  20. Law Y, Wang H, Zaniolo C (2011) Relational languages and data models for continuous queries on sequences and data streams. TODS 36(2):8:1–8:32

    Article  Google Scholar 

  21. Luckham D (2001) The power of events: an introduction to complex event processing in distributed enterprise systems. Addison-Wesley/Longman, Reading/Harlow

    Google Scholar 

  22. Meijer E (2011) The world according to LINQ. Commun ACM 54(10):45–51

    Article  Google Scholar 

  23. PostgreSQL (2013) http://www.postgresql.org/

  24. webMethods Business Events (2013) http://www.softwareag.com/corporate/products/wm/events/

Download references

Acknowledgements

This work has been supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) under grant no. 16BY1206A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Hoßbach.

Additional information

This is an extended version of the paper “Event Processing on your own Database” [12] selected for the special DASP issue Best Workshop Papers of BTW 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoßbach, B., Glombiewski, N., Morgen, A. et al. JEPC: The Java Event Processing Connectivity. Datenbank Spektrum 13, 167–178 (2013). https://doi.org/10.1007/s13222-013-0133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13222-013-0133-y

Keywords

  • Query processing
  • Stream management