, Volume 29, Issue 3–4, pp 140–149 | Cite as

The new Coimbra method for recording entheseal changes and the effect of age-at-death

  • C. Y. HendersonEmail author
  • V. Mariotti
  • F. Santos
  • S. Villotte
  • C. A. Wilczak
Article / Article


Entheseal changes have been widely used in anthropology to study activity patterns, but there is an increasing awareness that ageing is associated with these changes. The aim of this study was to test each feature of the new Coimbra method for its variability, side asymmetry and its relationship with age. In addition to this, an overall relationship with age was tested for a larger sample. Males 16 and over from the Coimbra skeletal collection of historically identified individuals were recorded using the new method (N = 260). To reduce the impact of occupation, side variability in asymmetry and age were only tested in the labourers (N = 51). All occupation groups were included to test the overall relationship with age using a random forest test. The results show that scores lack variability for many of the features and entheses. Where there is side asymmetry this is typically in favour of higher scores in the right side, excepting the biceps brachii insertion. Most of the features scored show a relationship with ageing, but this is not uniform for all features or entheses. Some features are associated with an increase in age (bone formation and erosions), while others generally occur in younger individuals (fine porosity and textural change). Logistic regression showed that ageing explains at most 44% of the variability. This alongside the side asymmetry may indicate that biomechanics has an explanatory role.


Asymmetry Activity-patterns Ageing Degeneration 

La nouvelle méthode Coimbra : changement au niveau des enthèses et influence de l’âge au décès


Les changements au niveau des enthèses ont été largement utilisés en anthropologie biologique pour discuter des patterns d’activités, malgré les études de plus en plus fréquentes associant ces changements principalement au vieillissement. L’objectif de cette étude est d’illustrer, pour chacune des modifications enregistrées avec la nouvelle méthode de Coimbra, la distribution générale des scores, l’asymétrie et leur relation à l’âge. Une étude plus globale sur l’effet du vieillissement a également été menée. L’analyse porte sur un échantillon de squelettes de sujets masculins décédés à 16 ans ou plus issus de la collection de squelettes identifiés de Coimbra (n = 260). Pour réduire l’influence de l’activité physique, seuls les sujets avec la profession de « trabalhador » (travailleur) ont été utilisés dans les tests sur l’asymétrie et l’âge (n = 51). Pour l’étude globale sur l’effet du vieillissement, toutes les professions ont été incluses dans une analyse utilisant les forêts aléatoires. Les résultats montrent que la variabilité des scores est faible pour la plupart des changements et des enthèses. Il existe une asymétrie assez claire avec des scores plus élevés du côté droit, sauf pour l’insertion du biceps brachii. La plupart des changements enregistrés présentent une corrélation positive avec l’âge au décès, sans toutefois être systématiques pour tous les changements ou toutes les enthèses considérées. Certains changements sont plus fréquents chez les sujets âgés (formation osseuse, érosion), alors que d’autres se retrouvent plus souvent chez les jeunes sujets (porosité fine et changement mineur de surface). Une régression logistique montre que le vieillissement explique au mieux 44 % de la variabilité perçue. Cela, ainsi que l’asymétrie directionnelle observée, pourrait indiquer que les phénomènes biomécaniques jouent un rôle dans l’apparition de ces changements.

Mots clés

Asymétrie Pattern d’activités Vieillissement Dégénération 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lieverse AR, Bazaliiskii VI, Goriunova OI, et al (2009) Upper limb musculoskeletal stress markers among middle Holocene foragers of Siberia’s Cis-Baikal region. Am J Phys Anthropol 138:458–72CrossRefPubMedGoogle Scholar
  2. 2.
    Lieverse AR, Bazaliiskii VI, Goriunova OI, et al (2013) Lower limb activity in the Cis-Baikal: Entheseal changes among middle Holocene Siberian foragers. Am J Phys Anthropol 150:421–32CrossRefPubMedGoogle Scholar
  3. 3.
    Jurmain R, Alves Cardoso F, Henderson C, et al (2012) Bioarchaeology’s Holy Grail: The reconstruction of activity. In: Grauer A (ed) A companion to paleopathology. Wiley/Blackwell, Chichester, UK pp 531–42CrossRefGoogle Scholar
  4. 4.
    Villotte S, Assis S, Cardoso FA, et al (2016) In search of consensus: terminology for entheseal changes (EC). Int J Paleopathol 13:49–55CrossRefGoogle Scholar
  5. 5.
    Hawkey DE, Merbs CF (1995) Activity-induced musculoskeletal stress markers (MSM) and subsistence strategy changes among ancient Hudson Bay Eskimos. Int J Osteoarchaeol 5:324–38CrossRefGoogle Scholar
  6. 6.
    Peterson J (1998) The Natufian hunting conundrum: Spears, atlatls, or bows? Musculoskeletal and armature evidence. Int J Osteoarchaeol 8:378–89CrossRefGoogle Scholar
  7. 7.
    Weiss E (2007) Muscle markers revisited: Activity pattern reconstruction with controls in a central California Amerind population. Am J Phys Anthropol 133:931–40CrossRefPubMedGoogle Scholar
  8. 8.
    Benjamin M, Kumai T, Milz S, et al (2002) The skeletal attachment of tendons–Tendon “entheses.” Comp Biochem Physiol Part A Mol Integr Physiol 133:931–45CrossRefGoogle Scholar
  9. 9.
    Benjamin M, McGonagle D (2001) The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat 199:503–26CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Benjamin M, Moriggl B, Brenner E, et al (2004) The “enthesis organ” concept: Why enthesopathies may not present as focal insertional disorders. Arthritis Rheum 50:3306–13CrossRefPubMedGoogle Scholar
  11. 11.
    McGonagle D (2005) Imaging the joint and enthesis: Insights into pathogenesis of psoriatic arthritis. Ann Rheum Dis 64(suppl 2):ii58–ii60PubMedPubMedCentralGoogle Scholar
  12. 12.
    Villotte S, Knüsel CJ (2013) Understanding entheseal changes: Definition and life course changes. Int J Osteoarchaeol 23:135–46CrossRefGoogle Scholar
  13. 13.
    Alves Cardoso F, Henderson CY (2010) Enthesopathy formation in the humerus: Data from known age-at-death and known occupation skeletal collections. Am J Phys Anthropol 141:550–60PubMedGoogle Scholar
  14. 14.
    Alves Cardoso F, Henderson CY (2013) The categorisation of occupation in identified skeletal collections: a source of bias? Int J Osteoarchaeol 23:186–96CrossRefGoogle Scholar
  15. 15.
    Cunha E, Umbelino C (1995) What can bones tell about labour and occupation: the analysis of skeletal markers of occupational stress in the Identified Skeletal Collection of the Anthropological Museum of the University of Coimbra (preliminary results). Antropol Port 13:49–68Google Scholar
  16. 16.
    Henderson CY, Mariotti V, Pany-Kucera D, et al (2013) Recording specific entheseal changes of fibrocartilaginous entheses: initial tests using the Coimbra method. Int J Osteoarchaeol 23:152–62CrossRefGoogle Scholar
  17. 17.
    Henderson CY, Nikita E (2015) Accounting for multiple effects and the problem of small sample sizes in osteology: A case study focussing on entheseal changes. Archaeol Anthropol Sci 8:805–17CrossRefGoogle Scholar
  18. 18.
    Mariotti V, Facchini F, Belcastro MG (2004) Enthesopathies–Proposal of a standardized scoring method and applications. Coll Antropol 28:145–59PubMedGoogle Scholar
  19. 19.
    Mariotti V, Facchini F, Belcastro MG (2007) The study of entheses: Proposal of a standardised scoring method for twenty-three entheses of the postcranial skeleton. Coll Antropol 31:291–313PubMedGoogle Scholar
  20. 20.
    Mariotti V, Milella M, Belcastro MG (2009) Musculoskeletal stress markers (MSM): methodological reflections. In: Santos AL, Alves Cardoso F, Assis S, Villotte S (eds) Workshop in musculoskeletal stress markers (MSM): Limitations and achievements in the reconstruction of past activity patterns Coimbra, July 2–3, 2009. Abstract book. Department of Anthropology University of Coimbra CIAS, p 28. Scholar
  21. 21.
    Michopoulou E, Nikita E, Valakos ED (2015) Evaluating the efficiency of different recording protocols for entheseal changes in regards to expressing activity patterns using archival data and cross-sectional geometric properties. Am J Phys Anthropol 158:557–68CrossRefPubMedGoogle Scholar
  22. 22.
    Milella M, Belcastro MG, Zollikofer CPE, et al (2012) The effect of age, sex, and physical activity on entheseal morphology in a contemporary Italian skeletal collection. Am J Phys Anthropol 148:379–88CrossRefPubMedGoogle Scholar
  23. 23.
    Hashimoto T, Nobuhara K, Hamada T (2003) Pathologic evidence of degeneration as a primary cause of rotator cuff tear. Clin Orthop Relat Res 415:111–20CrossRefGoogle Scholar
  24. 24.
    Hess GW (2010) Achilles tendon rupture: A review of etiology, population, anatomy, risk factors, and injury prevention. Foot Ankle Spec 3:29–32CrossRefPubMedGoogle Scholar
  25. 25.
    Stovitz SD, Johnson RJ (2006) “Underuse” as a cause for musculoskeletal injuries: Is it time that we started reframing our message? Br J Sports Med 40:738–9CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Henderson CY, Mariotti V, Pany-Kucera D, et al (2016) The new “Coimbra Method”: A biologically appropriate method for recording specific features of fibrocartilaginous entheseal changes. Int J Osteoarchaeol 25:925–32CrossRefGoogle Scholar
  27. 27.
    Henderson CY, Wilczak C, Mariotti V (2016) Commentary: An update to the new Coimbra method for recording entheseal changes. Int J Osteoarchaeol [in press]Google Scholar
  28. 28.
    Rocha MA (1995) Les collections ostéologiques humaines identifiées du Musée Anthropologique de l’Université de Coimbra. Antropol Port 13:7–38Google Scholar
  29. 29.
    Cardoso FA (2008) A portrait of gender in two 19th and 20th century Portuguese populations: A palaeopathological perspective. PhD thesis, Durham University, 359 pGoogle Scholar
  30. 30.
    Henderson CY (2008) When hard work is disease: The interpretation of enthesopathies. In: Brickley M, Smith M (eds) Proceedings of the eighth annual conference of the british association for biological anthropology and osteoarchaeology. British Archaeological Reports: International Series, Oxford, pp 17–23Google Scholar
  31. 31.
    Minagawa H, Itoi E, Konno N, et al (1998) Humeral attachment of the supraspinatus and infraspinatus tendons: an anatomic study. Arthrosc J Arthrosc Relat Surg 14:302–6CrossRefGoogle Scholar
  32. 32.
    Wilczak CA, Mariotti V, Pany-Kucera D, et al (2017) Training and interobserver reliability in qualitative scoring of skeletal samples. J Archaeol Sci Rep 11:69–79Google Scholar
  33. 33.
    Christensen RHB (2015) Ordinal: regression models for ordinal data. Available from: Scholar
  34. 34.
    Mangiafico SS (2015) An R companion for the handbook of biological statistics, version 1.09. Available from: Scholar
  35. 35.
    Breiman L, Friedman J, Olshen R, et al (1984) Classification and regression trees. Wadsworth, Belmont, CAGoogle Scholar
  36. 36.
    Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  37. 37.
    Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2:18–22Google Scholar
  38. 38.
    Villotte S, Castex D, Couallier V, et al (2010) Enthesopathies as occupational stress markers: Evidence from the upper limb. Am J Phys Anthropol 142:224–34PubMedGoogle Scholar
  39. 39.
    Abreu M, Chung C, Mendes L, et al (2003) Plantar calcaneal enthesophytes: New observations regarding sites of origin based on radiographic, MR imaging, anatomic, and paleopathologic analysis. Skeletal Radiol 32:13–21CrossRefPubMedGoogle Scholar
  40. 40.
    Thurston AJ (2002) Bone spurs: mechanism of production of different shapes based on observations in Dupuytren’s diathesis. ANZ J Surg 72:290–3CrossRefPubMedGoogle Scholar
  41. 41.
    Kullar JS, Randhawa GK, Kullar KK (2014) A study of calcaneal enthesophytes (spurs) in Indian population. Int J Appl basic Med Res 4:S13–6CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Menz HB, Zammit GV, Landorf KB, et al (2008) Plantar calcaneal spurs in older people: longitudinal traction or vertical compression? J Foot Ankle Res 1:7CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kumai T, Benjamin M (2002) Heel spur formation and the subcalcaneal enthesis of the plantar fascia. J Rheumatol 29:1957–64PubMedGoogle Scholar
  44. 44.
    Benjamin M, Toumi H, Suzuki D, et al (2007) Microdamage and altered vascularity at the enthesis-bone interface provides an anatomic explanation for bone involvement in the HLAB27-associated spondylarthritides and allied disorders. Arthritis Rheum 56:224–33CrossRefPubMedGoogle Scholar
  45. 45.
    Shaw HM, Benjamin M (2007) Structure–function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports 17:303–15CrossRefPubMedGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Lavoisier 2017

Authors and Affiliations

  • C. Y. Henderson
    • 1
    Email author
  • V. Mariotti
    • 2
    • 3
  • F. Santos
    • 4
  • S. Villotte
    • 4
  • C. A. Wilczak
    • 5
  1. 1.CIAS – Research Centre for Anthropology and Health, Department of Life SciencesUniversity of Coimbra, Calçada Martim de Freitas, Edíficio de São BentoCoimbraPortugal
  2. 2.Laboratorio di Bioarcheologia ed Osteologia Forense – Antropologia, Dipartimento di Scienze BiologicheGeologiche e Ambientali-Alma Mater Studiorum Università di BolognaBolognaItalia
  3. 3.ADÉS, UMR 7268 CNRS/Aix-Marseille université/EFSAix-Marseille universitéMarseille cedex 15France
  4. 4.CNRS, UMR 5199 PACEA, bâtiment B8, allée Geoffroy-Saint-Hilaireuniversité de BordeauxPessac cedexFrance
  5. 5.Department of AnthropologySan Francisco State UniversitySan FranciscoUSA

Personalised recommendations