, Volume 26, Issue 3–4, pp 121–128 | Cite as

Fossil hominins, quadrupedal primates and the origin of human bipedalism: a 3D geometric morphometric analysis of the Primate hamate

  • G. DaverEmail author
  • F. Détroit
  • G. Berillon
  • S. Prat
  • D. Grimaud-Hervé
Note / Note


This note illustrates the value of studying non-human primates, especially quadrupedal primates, in order to investigate the origins of human bipedalism. Two distinct hypotheses postulate that hominins and African great apes share a common ancestor predominantly engaged in specialized forms of locomotion, i.e., arboreal orthogrady (climbing or arboreal bipedalism) on the one hand and semiterrestrial locomotion (which includes climbing and quadrupedalism) on the other. Both hypotheses are supported by analysis of the wrist morphology of Pliocene hominins, and both have recently been challenged by a third hypothesis based on the study of Ardipithecus ramidus wrist morphology, which has shown general affinities between the latter hominin and quadrupedal primates. However, all three interpretations rely on rather limited knowledge of the variability of wrist bones in quadrupedal primates. Here, we propose to address the question of the origins of human bipedalism by means of a three-dimensional analysis of a carpal bone, the hamate, whose morphology appears to vary according to the locomotor behaviour of primates. We compared the original specimens of Pliocene hominins (Australopithecus) with a large sample of non-human primates, including various quadrupedal anthropoids. Our results confirm that, on the one hand, the shape of the hamate in primates varies significantly according to their locomotor behaviour and, on the other hand, that the hypothesis of the semiterrestrial origin of human bipedalism can be rejected. The affinities between Pliocene hominins and most of extant quadrupedal primates indicate that the hands of early hominins partly retained a morphology inherited from a generalist quadrupedal ancestor, which concurs with the hypothesis recently proposed from the hand bones of Ar. ramidus.


Carpals Evolution Quadrupedalism Bipedalism 3D geometric morphometrics 

Homininés fossiles, primates quadrupèdes et l’origine de la bipédie : une analyse morphométrique géométrique 3D de l’hamatum chez les primates


Cette note vise à illustrer l’intérêt d’étudier les primates non-humains, notamment quadrupèdes, pour mieux caractériser l’origine de la bipédie humaine. Deux hypothèses stipulent que les homininés partageraient avec les grands singes africains un ancêtre commun impliqué majoritairement dans une forme de locomotion spécialisée, à savoir : l’hypothèse d’une orthogradie arboricole (grimper ou bipédie arboricole) et l’hypothèse d’une semi-terrestrialité (qui inclue quadrupédie et grimper). Ces deux propositions sont notamment supportées par l’analyse morphologique du poignet des homininés pliocènes. Ces propositions ont été récemment remises en cause par une troisième interprétation fondée sur l’étude morphologique des os du poignet d’Ardipithecus ramidus, et qui a mis en évidence des affinités globales entre ce dernier homininé et des singes quadrupèdes. Cependant, ces trois propositions reposent sur une connaissance limitée de la variabilité de ces os chez les primates quadrupèdes. Nous proposons donc d’aborder la question de l’origine de la bipédie humaine par l’analyse tri-dimensionnelle d’un os carpien, l’hamatum, dont la morphologie varierait selon les modes locomoteurs des primates, en considérant des fossiles originaux d’homininés (Australopithecus) ainsi qu’un large échantillon d’anthropoïdes actuels, incluant une grande variété de primates quadrupèdes. Nos résultats confirment d’une part, que la forme de l’hamatum des primates varie selon les comportements locomoteurs, et d’autre part, que l’hypothèse d’une origine semiterrestre de la bipédie humaine peut être rejetée. Les affinités entre les homininés pliocènes et la plupart des primates quadrupèdes actuels soutiennent que les mains des homininés anciens ont en partie retenu une morphologie héritée d’un primate quadrupède généraliste. Ce résultat est en accord avec l’hypothèse récemment proposée à partir des os de la main d’Ar. ramidus.

Mots clés

Carpiens Évolution Quadrupédie Bipédie Morphométrie géométrique 3D 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wood B, Lonergan N (2008) The hominin fossil record: taxa, grades and clades. J Anat 12:354–76CrossRefGoogle Scholar
  2. 2.
    Crompton RH, Vereecke EE, Thorpe SKS (2009) Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J Anat 212:501–43CrossRefGoogle Scholar
  3. 3.
    Richmond BG, Begun DR, Strait DS (2001) Origin of human bipedalism: The knuckle-walking hypothesis revisited. Am J Phys Anthropol Suppl 33:70–105CrossRefGoogle Scholar
  4. 4.
    Begun DR (2004) Knuckle-walking and the origin of human bipedalism. In: Meldrum DJ, Hilton CE (eds) From biped to strider: The emergence of modern human walking, running, resource transport. Kluwer Academic/Plenum Publishers, New York, pp 9–33CrossRefGoogle Scholar
  5. 5.
    Richmond BG (2006) Functional morphology of the midcarpal joint in knuckle-walkers and terrestrial quadrupeds. In: Ishida H, Tuttle R, Pickford M, Ogihara N, Nakatsukasa M (eds) Human origins and environmental backgrounds, Springer, New York, pp 105–22CrossRefGoogle Scholar
  6. 6.
    Gebo DL (1996) Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am J Phys Anthropol 101:55–92PubMedCrossRefGoogle Scholar
  7. 7.
    Lovejoy CO, Simpson SS et al (2009) Careful climbing in the Miocene: the forelimbs of Ardipithecus ramidus and humans are primitive. Science 326:70CrossRefGoogle Scholar
  8. 8.
    Jenkins FA, Fleagle JG (1975) Knuckle-walking and the functional anatomy of the wrists in living apes. In: Tuttle RH (ed) Primate functional morphology and evolution. Mouton: The Hague, Paris, pp 213–27Google Scholar
  9. 9.
    Whitehead PF (1993) Aspects of the anthropoid wrist and hand. In: Gebo DL (ed) Postcranial adaptations in nonhuman primates. Northern Illinois University Press, Dekalb, pp 96–120Google Scholar
  10. 10.
    Schmitt D (1994) Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates. J Hum Evol 26:441–457CrossRefGoogle Scholar
  11. 11.
    Hamrick MW (1996) Functional morphology of the lemuriform wrist joints and the relationship between wrist morphology and positional behavior in arboreal primates. Am J Phys Anthropol 99:319–44PubMedCrossRefGoogle Scholar
  12. 12.
    Lemelin P, Schmitt D (1998) The relation between hand morphology and quadrupedalism in primates. Am J Phys Anthropol 105:185–97PubMedCrossRefGoogle Scholar
  13. 13.
    Jenkins FA (1981) Wrist rotation in primates: a critical adaptation for brachiators. Symp Zool Soc Lond 48:429–51Google Scholar
  14. 14.
    Corruccini RS, Ciochon RL, Mchenry HM (1975) Osteometric shape relationships in wrist joint of some anthropoids. Folia Primatol 24:250–74PubMedCrossRefGoogle Scholar
  15. 15.
    Sarmiento EE (1988) Anatomy of the hominoid wrist joint- its evolutionary and functional implications. Int J Primatol 9:281–345CrossRefGoogle Scholar
  16. 16.
    Spoor CF, Sondaar PY, Hussain ST (1991) A new hominoid hamate and first metacarpal from the late Miocene Nagri formation. J Hum Evol 21:413–24CrossRefGoogle Scholar
  17. 17.
    Sarmiento EE (1994) Terrestrial traits in the hands and feet of gorillas. Am Mus Novit 3091:1–56Google Scholar
  18. 18.
    Corruccini RS (1978) Comparative osteometrics of hominoid wrist joint, with special reference to knuckle-walking. J Hum Evol 7:307–21CrossRefGoogle Scholar
  19. 19.
    Kivell TL, Guimont I, Wall CE (2013) Sex-related shape dimorphism in the human radiocarpal and midcarpal joints. Anat Rec 296(1):19–30CrossRefGoogle Scholar
  20. 20.
    Kivell TL, Schmitt D (2009) Independent evolution of knucklewalking in African apes shows that humans did not evolve from a knuckle-walking ancestor. Proc Natl Acad Sci (USA) 106:14241–6CrossRefGoogle Scholar
  21. 21.
    Fleagle JG (1999) Primate adaptation and evolution. New York: Academic Press.Google Scholar
  22. 22.
    Kivell TL, Kibii JM et al (2011) Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science 333:1411–7PubMedCrossRefGoogle Scholar
  23. 23.
    Bush ME, Lovejoy CO et al (1982) Hominid carpal, metacarpal, and phalangeal bones recovered from the Hadar formation — 1974–1977 collections. Am J Phys Anthropol 57:651–77CrossRefGoogle Scholar
  24. 24.
    Ward CV, Leakey MG et al (1999) South Turkwel: A new Pliocene hominid site in Kenya. J Hum Evol 36:69–95PubMedCrossRefGoogle Scholar
  25. 25.
    Penin X, Baylac M (1999) Comparison of skulls of Pan and Pongo using tridimensional procruste superimpositions. C R Acad Sci Paris Ser III, 322:1099–1104CrossRefGoogle Scholar
  26. 26.
    O’Higgins P, Jones N (2006) Tools for statistical shape analysis. Hull York medical school. Scholar
  27. 27.
    R Development Core Team (2013) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL Google Scholar
  28. 28.
    Claude J (2008) Morphometrics with R. Springer, Berlin, 315 ppGoogle Scholar
  29. 29.
    Tuttle RH (1970) Postural, propulsive and prehensile capabilities in the cheiridia of chimpanzees and other great apes. In: Bourne GH (ed) The chimpanzee, vol.2. Karger, Basel, New York, pp 167–253Google Scholar
  30. 30.
    Wunderlich RE, Jungers WL (2009) Manual digital pressures during knuckle-walking in chimpanzees (Pan troglodytes). Am J Phys Anthropol 139:394–403.PubMedCrossRefGoogle Scholar
  31. 31.
    Daver G, Berillon G, Grimaud-Hervé D. (2012) Carpal kinematics in quadrupedal monkeys: towards a better understanding of wrist morphology and function. J Anat (220):42–56PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Dainton M, Macho GA (1999) Did knuckle-walking evolve twice? J Hum Evol 36:171–94PubMedCrossRefGoogle Scholar
  33. 33.
    Daver G (2009) The articular wrist complex in Miocene and Plio-Pleistocene African hominoids: anatomofunctional and morphometric comparative approach. Bull Mém Soc Anthropol Paris 21:233–9Google Scholar
  34. 34.
    Daver G, Detroit F (2012) Forme et fonction du complexe médiocarpien des primates anthropoïdes actuels: implication pour l’émergence de la bipédie chez les homininés. Actes du 7e symposium morphométrie et évolution des formes, pp 17–18Google Scholar
  35. 35.
    Ward CV (2007) Postural and locomotor adaptations of nonhuman hominoids. In: Henke, W, Tattersall I (eds) Handbook of Palaeoanthropology, Vol. 2: Primate evolution and human origins. Springer, Berlin, pp 1011–1030CrossRefGoogle Scholar
  36. 36.
    McCrossin ML, Benefit BR et al (1998) Fossil evidence for the origins of terrestriality among Old World higher primates. In: Strasser E, Fleagle JG, Rosenberger A, McHenry H (eds) Primate locomotion: recent advances, Plenum Press: New York, pp 353–96CrossRefGoogle Scholar
  37. 37.
    Patel BA, Susman RL et al (2009) Terrestrial adaptations in the hands of Equatorius africanus revisited. J Hum Evol 57:763–72PubMedCrossRefGoogle Scholar
  38. 38.
    Inouye SE (1994) The ontogeny of knuckle-walking behavior and associated morphology in the African apes. Northwestern University, Evanston, Illinois, 513pGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Springer-Verlag France 2014

Authors and Affiliations

  • G. Daver
    • 1
    Email author
  • F. Détroit
    • 2
  • G. Berillon
    • 3
  • S. Prat
    • 3
  • D. Grimaud-Hervé
    • 2
  1. 1.IPHEP : Institut de Paléoprimatologie et de Paléontologie Humaine : évolution et paléoenvironnementsUMR (CNRS) 7262, Université de Poitierscedex 9France
  2. 2.Département de PréhistoireUMR (CNRS) 7194, Muséum national d’Histoire naturelleParisFrance
  3. 3.UPR (CNRS) 2147, Dynamique de l’Evolution HumaineParisFrance

Personalised recommendations