BMSAP

, Volume 26, Issue 3–4, pp 147–153 | Cite as

An allometric study of Macaca fascicularis from the Late Pleistocene deposits at the Ille site (Philippines): a possible model for Southeast Asian Dwarf Hominins

Note / Note

Abstract

Recent discoveries of taxonomically challenging Southeast Asian dwarf hominins from Liang Bua in Indonesia and the Callao Cave in the Philippines have enabled us to investigate the general tendency towards dwarfism or gigantism already observed in endemic insular animals. One current hypothesis suggests that the pygmy human phenotype is the result of evolutionary selection in rainforest environments. In this paper we test the hypothesis that dwarfism is a response to forest habitats, using macaque (Macaca fascicularis) fossils from the well-stratified archaeological sequence at the Ille site in the Philippines. Our results show that changes in size may affect general conformations in forested environments, and therefore support the hypothesis put forward on the evolution of pygmy hominin populations in tropical rainforest habitats.

Keywords

Non-human primates Rainforest Insular and Environmental dwarfism Southeast Asian insularity Hominin evolution Elliptic Fourier 

Étude allométrique de Macaca fascicularis des dépôts du Pléistocène supérieur du site de Ille (Philippines) : un possible modèle pour les Homininés de petite taille du sud-est asiatique

Résumé

Les récentes découvertes d’homininés de petite taille en Asie du Sud-est insulaire à Liang Bua (Indonésie) et Callao Cave (Philippines), dont la taxinomie est débattue, permettent de discuter de leur tendance au nanisme ou gigantisme par ailleurs déjà observé pour les faunes sujettes à l’endémisme insulaire. Une hypothèse actuelle propose que le phénotype pygmoïde soit le résultat d’une évolution en forêt tropicale. Nous cherchons ici à tester l’hypothèse du nanisme comme réponse à un habitat forestier, à partir de macaques (Macaca fascicularis) provenant des niveaux archéologiques stratifiés du site du site de Ille (Philippines). Nos résultats montrent que des changements de tailles peuvent avoir des conséquences sur la conformation générale dans le cadre d’un environnement forestier. Notre étude vient appuyer l’hypothèse de l’évolution du phénotype pygmoïde en forêt tropicale humide.

Mots clés

Primates non-humains Forêt tropicale humide Nanisme insulaire et environnemental Asie du Sud-Est insulaire Évolution humaine Fourier elliptique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morwood MJ, Soejono RP, Roberts RG (2004) Archaeology and age of a new hominin from Flores in eastern Indonesia. Nature 431:1087–91PubMedCrossRefGoogle Scholar
  2. 2.
    Foster JB (1964) The evolution of mammals on islands. Nature 202:234–5CrossRefGoogle Scholar
  3. 3.
    Jacob T, Indriati E, Soejono RP, et al (2006) Pygmoid Australomelanesian Homo sapiens skeletal remains from Liang Bua: population affinities and pathological abnormalities. Proc Natl Acad Sci 103:13421–6PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Oxnard C, Obendorf PJ, Kefford BJ (2010) Post-Cranial Skeletons of Hypothyroid Cretins Show a Similar Anatomical Mosaic as Homo floresiensis. PLoS ONE 5(9)CrossRefGoogle Scholar
  5. 5.
    Bromham L, Cardillo M (2007), Primates follow the island rule. Implications for Homo floresiensis. Biol Lett 3:398–400PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Niven JE (2007) Brains, islands and evolution: breaking the rules. Trends Ecol Evo 22(2):57–9CrossRefGoogle Scholar
  7. 7.
    Niven JE (2008) Response to Köhler et al: Impossible arguments about possible species? Trends Ecol Evo 23(1):8–9CrossRefGoogle Scholar
  8. 8.
    Montgomery SH (2013) Primates brain, the ‘island rule’ and evolution of Homo floresiensis. J Hum Evol 65:750–60PubMedCrossRefGoogle Scholar
  9. 9.
    van der Geer A, Lyras G, de Vos J and Dermitzakis M (2010) Evolution of island mammals: Adaptation and extinction of placental mammals on islands p. 173–205. Wiley-Blackwell, Oxford.CrossRefGoogle Scholar
  10. 10.
    Lomolino MV, van der Geer A, Lyras GA, et al (2013) Of mice and mammoths: generality and antiquity of the island rule. J Biogeogr 40:1427–39CrossRefGoogle Scholar
  11. 11.
    Heaney LR (1978) Island area and body size of insular mammals: evidence from the tri-colored squirrel (Callosciurusprevosti) of Southeast Asia. Evol 32:29–44CrossRefGoogle Scholar
  12. 12.
    Viterbo KMA, Jungers W, Sutikna T, et al (2012) 3D geometric morphometrics of the LB1 mandible support the new species diagnosis (Homo floresiensis). Ame Assoc Phys Anthropol CongressGoogle Scholar
  13. 13.
    Mijares AS, Détroit F, Piper P, et al (2010) New evidence for a 67,000-year-old human presence at Callao Cave, Luzon, Philippines. J Hum Evol 59:123–32PubMedCrossRefGoogle Scholar
  14. 14.
    Jones AW, Kenned RS (2008) Evolution in a tropical archipelago: comparative phylogeography of Philippine fauna and flora reveals complex patterns of colonization and diversification. Biol J Linn Soc 95:620–39CrossRefGoogle Scholar
  15. 15.
    Vos J de, Bautista AP (2001) Preliminary notes on the vertebrate fossils from the Philippines. In: Proceedings of the Society of Philippine Archaeologists: 42–62Google Scholar
  16. 16.
    MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press, Princeton. 203pGoogle Scholar
  17. 17.
    Losos JB, Ricklefs RE (2012) The Theory of Island Biogeography revisited. Princeton University Press, Princeton. 495pGoogle Scholar
  18. 18.
    Détroit F, Corny J, Sizon EZ, Mijares ASB (in press) “Small size” in the Philippine human fossil record: is it meaningful for a better understanding of the evolutionary history of the Negritos? Hum Biol 85(1–2):41–61Google Scholar
  19. 19.
    Migliano AB, Vinicius L, Lahr MM (2007) Life history trade-offs explain the evolution of human pygmies. Proc Natl Acad Sci 104:20216–9PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Becker NSA, Verdu P, Hewlett B, Pavard S (2010) Can life history trade-offs explain the evolution of short stature in human pygmies? A response to Migliano et al (2007). Hum Biol 82:17–27PubMedCrossRefGoogle Scholar
  21. 21.
    Turnbull CM (1986), Survival factors among Mbuti and other hunters of the equatorial African rainforest. In: LL Cavalli-Sforza African Pygmies, p. 103–123, FL: Academic Press, OrlandoGoogle Scholar
  22. 22.
    Perry GH, Dominy NJ (2009) Evolution of the human pygmy phenotype. Trends Ecol Evol 24(4):218–25PubMedCrossRefGoogle Scholar
  23. 23.
    Fooden J (1995) Systematic review of Southeast Asian longtail macaques, Macaca fascicularis (Raffles, 1821). Fieldiana 8:1–206Google Scholar
  24. 24.
    Gupta A, Chivers D (1999) Biomass and use of resources in south and southeast Asian primate communities. In: JG Fleagle, CH Janson, K Reed (ed) Primate Communities, Cambridge University Press, Cambridge p. 38–54.CrossRefGoogle Scholar
  25. 25.
    Ochoa J (2009) Terrestrial vertebrates from Ille site, Northern Palawan, Philippines. Master’s Thesis, 134pGoogle Scholar
  26. 26.
    Lewis H, Paz V, Lara M, et al (2008) Terminal Pleistocene to Mid-Holocene occupation and an early cremation burial at Ille site, Palawan, Philippines. Antiquity 82:318–35Google Scholar
  27. 27.
    Piper PJ, Ochoa J, Robles EC, et al (2011) Palaeozoology of Palawan Island, Philippines. Quat Int 233:142–58CrossRefGoogle Scholar
  28. 28.
    Rohlf FJ (2004) TPSdig v.1.40Google Scholar
  29. 29.
    Khul FP, Giardina CR (1982) Elliptic Fourier of a closed contour. Computer Graphics and Image Processing 18:236–58CrossRefGoogle Scholar
  30. 30.
    Lestrel P (1997) Fourier descriptors and their applications in biology. Cambridge University Press, New York 466 pCrossRefGoogle Scholar
  31. 31.
    Crampton J (1995) Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28:179–86CrossRefGoogle Scholar
  32. 32.
    Rohlf FJ, Corti M (2000) Use of Two-Block Partial Least-Square to study covariation in shape. Sys Biol 49(4):740–53CrossRefGoogle Scholar
  33. 33.
    Bonhomme V (2013) Momocs PackageGoogle Scholar
  34. 34.
    Claude J (2008) Morphometrics with R. Berlin: SpringerGoogle Scholar
  35. 35.
    R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.Google Scholar
  36. 36.
    Klingenberg CR (2010) Evolution and development of shape: Integrative quantitative approaches. Nature Rev Genet 11:623–35PubMedGoogle Scholar
  37. 37.
    Darwin C (1859) On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. John Murray, London, 502p.Google Scholar
  38. 38.
    Leigh Jr EG, Hladick A, Hladick CM, Jolly A (2007) The biogeography of large islands, or how does the size of the ecological theatre affect the evolutionary play? Revue d’écologie (Terre Vie) 62:105–68Google Scholar
  39. 39.
    Adler GH, Levins R (1994) The island syndrome in rodent populations. Quat Rev Biol 69:473–90CrossRefGoogle Scholar
  40. 40.
    Kölher M, Moyà-Solà S, Wrangham RW (2008) Island rules cannot be broken. Trends Ecol Evol 23(1):6–7CrossRefGoogle Scholar
  41. 41.
    Argue D, Donlon D, Groves C, Wright R (2006) Homo floresiensis: Microcephalic, pygmoid, Australopithecus or Homo? J Hum Evol 51:360–74PubMedCrossRefGoogle Scholar
  42. 42.
    Simons EL (1997) Lemurs: old and new. In: SM Goodman, BD Patterson (eds). Natural change and human impact in Madagascar. p.142–166, Smithsonian Institution Press, Washington, DCGoogle Scholar
  43. 43.
    van der Geer A, Lyras GA, Lomolino MV, et al (2013) Body size evolution of palaeo-insular mammals: temporal variations and interspecific interactions. J Biogeogr 40:1440–50CrossRefGoogle Scholar
  44. 44.
    Lomolino MV, Sax DF, Palombo MR, van der Geer A (2012) Of mice and mammoths: evaluations of causal explanations for body size evolution in insular mammals. J Biogeogr 39:842–54CrossRefGoogle Scholar
  45. 45.
    Brain CK (1981) The Hunters or the Hunted: An introduction to African cave taphonomy, The University of Chicago Press: Chicago and London 365pGoogle Scholar
  46. 46.
    Headland TN, Bailey RC (1991) Introduction: Have Hunter-Gatherers ever lived in tropical rain forest independently of agriculture? Hum Ecol 19(2):115–22CrossRefGoogle Scholar
  47. 47.
    Heaney LR, Piper PJP, Mijares ASB (2011) The first fossil record of endemic murid rodents from the Philippines: A late Pleistocene cave fauna from northern Luzon. Proc Biol Soc Washington 124(3):234–47CrossRefGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Archaeological Studies ProgramUniversity of the Philippines Diliman, Albert HallQuezon CityPhilippines
  2. 2.Department of AnthropologyUniversity of the Philippines Diliman, Palma HallQuezon CityPhilippines
  3. 3.Département de Préhistoiredu Muséum national d’Histoire naturelle, UMR 7194, CNRSParisFrance

Personalised recommendations