BMSAP

, Volume 26, Issue 1–2, pp 67–77 | Cite as

Analyse fonctionnelle des adaptations osseuses du squelette post crânien au Néolithique final en Provence

  • A. Lambert
  • L. Puymerail
  • K. Chaumoitre
  • A. Schmitt
Article / Article

Résumé

Afin de définir les caractéristiques biomécaniques de la population issue de l’hypogée des Boileau, un ensemble funéraire collectif du Néolithique final vauclusien, nos travaux se sont orientés vers la géométrie de section. Cet outil permet d’estimer la capacité de l’os à résister à des contraintes mécaniques en mesurant les propriétés géométriques des sections transverses diaphysaires. Il permet ainsi d’esquisser les modalités d’exécution des activités des populations passées; les modèles d’activités.

Les paramètres des sections humérales et fémorales ont été calculés pour 61 individus (40 femmes et 21 hommes) par tomographie médicale.

Aucun dimorphisme sexuel biomécanique lié à l’asymétrie bilatérale ou aux dimensions des membres n’a été mis en évidence pour l’humérus suggérant une pratique préférentielle d’activités bilatérales et des modalités d’exécution des activités semblables entre les sexes. En revanche, la robustesse fémorale masculine indique une pratique d’activités physiques plus intenses que celle des femmes, laissant envisager une éventuelle division sexuelle des tâches impliquant le membre inférieur. Les types de mouvements du fémur semblent être équivalents entre les sexes.

Mots clés

Biomécanique Propriétés géométriques de section Tomographie médicale Humérus Fémur Néolithique Final Provence 

Functional analysis of osseous adaptations of the post cranial skeleton during the Late Neolithic in Provence

Abstract

The aim of this paper was to investigate the biomechanical patterns of a Late Neolithic population from the Vaucluse (Provence, France). To do so, we used crosssectional geometry to assess the strength and robustness of long bone diaphyses and relate these to specific behaviour patterns in the population.

Cross-sectional geometric properties of the humerus and femur were obtained by CT scanning for 61 individuals (40 females and 21 males) of the Boileau hypogeum (Vaucluse, France).

The sample shows no indication of sexual dimorphism in the size or bilateral asymmetry of the humerus, which suggests predominant and similar patterns of bilateral activity in both sexes. However, the femur in males is significantly more robust, reflecting high levels of mechanical stress and suggesting more intense physical activity than in women, and therefore a possible gender-based division of tasks involving the lower limb. Patterns of femoral movement appear to be equivalent between sexes.

Keywords

Biomechanics Cross-sectional geometric properties Computed Tomography Humerus Femur Late Neolithic Provence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Wolff J (1892) Das gesetz der transformation der knochen, Hirschwald, BerlinGoogle Scholar
  2. 2.
    Martin RB (2000) Toward a unifying theory of bone remodelling. Bone 26:1–6PubMedCrossRefGoogle Scholar
  3. 3.
    Martin B, Burr D, Sharkey N (1998) Skeletal Tissue Mechanics, Springer, Dordrecht, 406 pCrossRefGoogle Scholar
  4. 4.
    Lanyon L (1992) Control of bone architecture by functional load bearing. J Bone Min Res 7:369–375CrossRefGoogle Scholar
  5. 5.
    Gosman J, Stout S, Larsen C (2011) Skeletal biology over the life span: A view from the surface. Am J Phys Anthropol 146:86–98PubMedCrossRefGoogle Scholar
  6. 6.
    Carter D, Beaupre G (2001) Skeletal Function and Form. Mechanobiology of Skeletal Development, Aging and Regeneration, Cambridge University Press, Cambridge, 318 pGoogle Scholar
  7. 7.
    Ruff CB, Scott WW, Liu AYC (1991) Articular and diaphyseal remodelling of the proximal femur with changes in body mass in adults. Am J Phys Anthropol 86:397–413PubMedCrossRefGoogle Scholar
  8. 8.
    Ruff C, Runestad J (1992) Primate limb bone structural adaptations. Ann Rev Anthropol 21:407–433CrossRefGoogle Scholar
  9. 9.
    Lieberman D, Devlin M, Pearson O (2001) Articular area responses to mechanical loading: effects of exercise, age, and skeletal location. Am J Phys Anthropol 116:266–277PubMedCrossRefGoogle Scholar
  10. 10.
    Lovejoy C, McCollum M, Reno P, et al (2003) Developmental biology and human evolution. Ann Rev Anthropol 35:85–109CrossRefGoogle Scholar
  11. 11.
    Lieberman D, Polk J, Demes B (2004) Predicting long bone loading from cross-sectional geometry. Am J Phys Anthropol 123:156–171PubMedCrossRefGoogle Scholar
  12. 12.
    Pearson O, Lieberman D (2004) The aging of Wolff’s “law”: ontogeny and responses to mechanical loading in cortical bone. Yearbook Phys Anthropol 47:63–99CrossRefGoogle Scholar
  13. 13.
    Wallace IJ, Middleton KM, Lublinsky S, et al (2010) Functional significance of genetic variation underlying limb bone diaphyseal structure. Am J Phys Anthropol 143:21–30PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ruff CB (2003) Long bone articular and diaphyseal structure in Old World monkeys and apes, II: Estimation of body mass. Am J Phys Anthropol 120:16–37PubMedCrossRefGoogle Scholar
  15. 15.
    Cowgill L (2010) The ontogeny of holocene and late pleistocene human postcranial strength. Am J Phys Anthropol 141:16–37PubMedGoogle Scholar
  16. 16.
    Ruff C, Walker A, Trinkaus E (1994) Postcranial robusticity in Homo, III: Ontogeny. Am J Phys Anthropol 93:35–54PubMedCrossRefGoogle Scholar
  17. 17.
    Ruff CB, Holt BM, Trinkaus E (2006) Who’s afraid of the big bad Wolff? “Wolff’s Law” and bone functional adaptation. Am J Phys Anthropol 129:484–488PubMedCrossRefGoogle Scholar
  18. 18.
    Shaw C, Stock J (2009) Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes. Am J Phys Anthropol 140:160–172PubMedCrossRefGoogle Scholar
  19. 19.
    Shaw C, Stock J (2011) The influence of body proportions on femoral and tibial midshaft shape in hunter-gatherers. Am J Phys Anthropol 144:22–29PubMedCrossRefGoogle Scholar
  20. 20.
    Carlson K, Judex S (2007) Increased non-linear locomotion alters diaphyseal bone shape. J Experimental Biol 210:3117–3125CrossRefGoogle Scholar
  21. 21.
    Perréard Lopreno G (2007) Adaptation structurelle des os du membre supérieur et de la clavicule à l’activité: analyse de l’asymétrie des propriétés géométriques de sections transverses et de mesures linéaires dans une population identifiée (collection Simon), Thèse de Doctorat de la Faculté des Sciences, Université de Genève, Genève, 356 pGoogle Scholar
  22. 22.
    Ruff CB (2008) Biomechanical analyses of archaeological human skeletons. In: Katzenberg A, Saunders SR (ed), Biological Anthropology of the Human Skeleton. Alan R. Liss, New York, pp 183–206CrossRefGoogle Scholar
  23. 23.
    Holt B, Formicola V (2008) Hunters of the Ice Age: the biology of Upper Palaeolithic people. Yearbook Phys Anthropol 51:70–99CrossRefGoogle Scholar
  24. 24.
    Holt B (2003) Mobility in Upper Palaeolithic and Mesolithic Europe: Evidence From the Lower Limb. Am J Phys Anthropol 122:200–215PubMedCrossRefGoogle Scholar
  25. 25.
    Marchi D, Sparacello VS, Holt BM, et al (2006) Biomechanical approach to the reconstruction of activity patterns in Neolithic Western Liguria, Italy. Am J Phys Anthropol 131:447–455PubMedCrossRefGoogle Scholar
  26. 26.
    Marchi D (2008) Relationships between lower limb cross-sectional geometry and mobility: The case of a Neolithic sample from Italy. Am J Phys Anthropol 137:188–200PubMedCrossRefGoogle Scholar
  27. 27.
    Sládek V, Berner ME, Sailer R (2006) Mobility in central European Late Eneolithic and Early Bronze Age: femoral crosssectional geometry. Am J Phys Anthropol 130:320–322PubMedCrossRefGoogle Scholar
  28. 28.
    Sládek V, Berner ME, Sosna D, et al (2007) Human manipulative behavior in the Central European Late Eneolithic and Early Bronze Age: Humeral bilateral asymmetry. Am J Phys Anthropol 133:669–681PubMedCrossRefGoogle Scholar
  29. 29.
    Ruff CB, Hayes WC (1983) Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation: I. Method and general patterns of variation. Am J Phys Anthropol 60:359–381PubMedCrossRefGoogle Scholar
  30. 30.
    Bridges PS (1989) Changes in activities with the shift to agriculture in the southeastern United States. Curr Anthropol 30:385–394CrossRefGoogle Scholar
  31. 31.
    Stock JT, Shaw CN (2007) Which measures of diaphyseal robusticity are robust? A comparison of external methods of quantifying the strength of long bone diaphyses to cross-sectional geometric properties. Am J Phys Anthropol 134:412–423PubMedCrossRefGoogle Scholar
  32. 32.
    O’Neill MC, Ruff CB (2004) Estimating human long bone crosssectional geometric properties: a comparison of noninvasive methods. J Hun Evol 47:221–235CrossRefGoogle Scholar
  33. 33.
    Ruff CB (1999) Body size, body shape, and long bone strength in modern humans. J Hum Evol 38:269–290CrossRefGoogle Scholar
  34. 34.
    Ruff CB (2002) Long bone articular and diaphyseal structure in old world monkeys and Apes. I: Locomotor effects. Am J Phys Anthropol 119:305–342PubMedCrossRefGoogle Scholar
  35. 35.
    Puymerail L, Ruff CB, Bondioli L, et al (2012) Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java). J Hum Evol 63:741–749PubMedCrossRefGoogle Scholar
  36. 36.
    Lemercier O, Blaise E, Cauliez J, et al (2004) La fin des temps néolithiques. In: Buisson-Catil J, Guilcher A, Hussy C, et al (ed) Vaucluse préhistorique: le territoire, les hommes, les cultures et les sites. Barthélémy, Le Pontet, pp 203–252Google Scholar
  37. 37.
    Tarrête J, Le Roux CT (2008) Le Néolithique, Archéologie de la France, AJ Picard-Ministère de la Culture et de la Communication, Paris, 417 pGoogle Scholar
  38. 38.
    Pétrequin P, Arbogast RM, Pétrequin AM, et al (2006) Premiers chariots, premiers araires — La diffusion de la traction animale en Europe pendant les IVe et IIIe millénaires avant notre ère, CNRS éditions, Paris, 397 pGoogle Scholar
  39. 39.
    Leroyer C, Thiebault S, Brochier J (2008) L’environnement végétal: néolithisation et transformations du paysage végétal: rythmes et modalités. In: Tarrête J, Roux C (ed), Archéologie de la France. Le Néolithique. Picard, Paris, pp 53–75Google Scholar
  40. 40.
    Blaise (2005) L’élevage au Néolithique final dans le sud-est de la France: éléments de réflexion sur la gestion des troupeaux. Anthropozoologica 40:191–216Google Scholar
  41. 41.
    Magny M (2010) Eléments pour une histoire du climat en Europe occidentale de 4500 à 2500 BC. In: Lemercier O, Furestier R, Blaise E (ed), Quatrième millénaire. La transition du Néolithique moyen au Néolithique final dans le sud-est de la France et les régions voisines. Actes de la table ronde internationale d’Aix en Provence, mars 2005, Lattes. Publications de l’UMR 5140 / ADALGoogle Scholar
  42. 42.
    Sauzade G (1998) Les sépultures collectives provençales. In: Soulier P (ed), La France des dolmens et des sépultures collectives. Ed. Errance, Paris: pp 292–326Google Scholar
  43. 43.
    Sauzade G (1983) Les sépultures du Vaucluse du Néolithique à l’Age du bronze. Études Quaternaires 6, Institut de Paléontologie Humaine, Paris, 253 pGoogle Scholar
  44. 44.
    Chambon P, Leclerc J (2008) Les pratiques funéraires. In: Tarrête J, Roux C (ed), Archéologie de la France. Le Néolithique. Picard, ParisGoogle Scholar
  45. 45.
    Devriendt W (2004) L’hypogée des Boileau, Thèse de doctorat de la Faculté de Médecine, Université de la Méditerranée-Aix Marseille II, Marseille, 297 pGoogle Scholar
  46. 46.
    Kelly L (1995) The Foraging Spectrum: Diversity in Hunter-Gatherer Lifeways, Smithsonian Institution Press, Washington et Londres, 462 pGoogle Scholar
  47. 47.
    Binford L (1980) Willow smoke and dogs’ tails: hunter-gatherer settlement systems and archaeological site formation. Am Antiq 45:4–20CrossRefGoogle Scholar
  48. 48.
    Mahieu E (2000) L’hypogée des Boileau (Vaucluse, France). Organisation, fonctionnement, comparaisons. In: Melis MG (ed) L’ipogeismo nel Mediterraneo: origini, sviluppo, quadri culturali, Università degli Studi — Facoltà di Lettere e Filosofias, Sassari, pp 591–606Google Scholar
  49. 49.
    Devriendt W (2004) Les hypogées Vauclusiens: vers une meilleure connaissance des populations du néolithique final. In: Buisson-Catil J, Guilcher A, Hussy C, et al (ed) Vaucluse préhistorique: le territoire, les hommes, les cultures et les sites. Barthélémy, Le Pontet, pp 245–250Google Scholar
  50. 50.
    Schmitt A (2005) Une nouvelle méthode pour estimer l’âge au décès des adultes à partir de la surface sacro-pelvienne iliaque. Bull Mém Soc Anthropol Paris 17:89–101Google Scholar
  51. 51.
    Murail P, Bruzek J, Houët F, et al (2005) DSP: A tool for probabilistic sex diagnosis using worldwide variability in hip-bone measurements. Bull Mém Soc Anthropol Paris 17:167–176Google Scholar
  52. 52.
    Bello S, Signoli M, Thomann A, et al (2003) Nouvelle méthode de quantification de l’état de conservation des surfaces corticales et son application dans les études paléopathalogiques et paléoépidémiologiques. Bull Mém Soc Anthropol 15:7–8Google Scholar
  53. 53.
    Dutour O (1989) Hommes fossiles du Sahara — Peuplements holocènes du Mali septentrional, CNRS éditions, Paris, p 342Google Scholar
  54. 54.
    Spoor CF, Zonneveld FW, Macho GA (1993) Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am J Phys Anthropol 91:469–484PubMedCrossRefGoogle Scholar
  55. 55.
    Fajardo RJ, Ryan TM, Kappelman J (2002) Assessing the accuracy of high-resolution x-ray computed tomography of primate trabecular bone by comparisons with histological sections. Am J Phys Anthropol 118:1–10PubMedCrossRefGoogle Scholar
  56. 56.
    Auerbach BM, Ruff CB (2006) Limb bone bilateral asymmetry: Commonality and variability among modern humans. J Hum Evol 50:203–218PubMedCrossRefGoogle Scholar
  57. 57.
    Carlson K (2005) Investigating the form-function interface in african apes: relationships between principal moments of area and positional behaviors in femoral and humeral diaphyses. Am J Phys Anthropol 127:312–334PubMedCrossRefGoogle Scholar
  58. 58.
    Sládek V, Berner M, Galeta P, et al (2010) Technical Note: The Effect of Midshaft Location on the Error Ranges of Femoral and Tibial Cross-sectional Parameters. Am J Phys Anthropol 141:325–332PubMedGoogle Scholar
  59. 59.
    Lovejoy CO, Burstein AH, Heiple KG (1976) The biomechanical analysis of bone strength: a method and its application to platycnemia. Am J Phys Anthropol 44:489–505PubMedCrossRefGoogle Scholar
  60. 60.
    Grine FE, Jungers WL, Tobias PV, et al (1995) Fossil Homo femur from Berg Aukas, northern Namibia. Am J Phys Anthropol 26:67–78Google Scholar
  61. 61.
    McHenry HM (1991) Femoral lengths and stature in Plio-Pleistocene hominids. Am J Phys Anthropol 85:149–158PubMedCrossRefGoogle Scholar
  62. 62.
    Ruff C, Holt B, Niskanen M, et al (2012) Stature and body mass estimation from skeletal remains in the European Holocene. Am J Phys Anthropol 148:601–617PubMedCrossRefGoogle Scholar
  63. 63.
    Auerbach BM, Ruff CB (2004) Human body mass estimation: a comparison of “morphometric” and “mechanical” methods. Am J Phys Anthropol 125:331–342PubMedCrossRefGoogle Scholar
  64. 64.
    Ruff CB, Trinkaus E, Walker AC, et al (1993) Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation. Am J Phys Anthropol 91:21–53Google Scholar
  65. 65.
    Benjamini Y; Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological) 57:289–300Google Scholar
  66. 66.
    Maggiano I, Schultz M, Kierdorf H, et al (2008) Cross-sectional analysis of long bones, occupational activities and long-distance trade of the classic maya from xcambo: archaeological and osteological evidence. Am J Phys Anthropol 136:470–477PubMedCrossRefGoogle Scholar
  67. 67.
    Sparacello V, Marchi D (2008) Mobility and subsistence economy: A diachronic comparison between two groups settled in the same geographical area (Liguria, Italy). Am J Phys Anthropol 136:485–495PubMedCrossRefGoogle Scholar
  68. 68.
    Nikita E, Ysi Siew Y, Stock J, et al (2011) Activity patterns in the Sahara Desert: An interpretation based on cross-sectional geometric properties. Am J Phys Anthropol 146:423–434PubMedCrossRefGoogle Scholar
  69. 69.
    Dutour O (1992) Activités physiques et squelette humain: le difficile passage de l’actuel au fossile. Bull Mém Soc Anthropol Paris 4:233–241CrossRefGoogle Scholar
  70. 70.
    Kennedy K (1998) Markers of occupational stress: conspectus and prognosis of research. Intern J Osteoarchaeol 8:305–310CrossRefGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Springer-Verlag France 2013

Authors and Affiliations

  • A. Lambert
    • 1
  • L. Puymerail
    • 1
    • 2
  • K. Chaumoitre
    • 1
    • 3
  • A. Schmitt
    • 1
  1. 1.UMR 7268 — Anthropologie bio-culturelle, Droit, Éthique & Santé (ADÉS)Université de la Méditerranée, Faculté de Médecine, Secteur NordMarseille cedex 15France
  2. 2.Département de PréhistoireMuséum national d’Histoire naturelle, UMR 7194ParisFrance
  3. 3.Service d’imagerie médicaleHôpital Nord-CHU Marseille, Chemin des BourrelyMarseille cedex 20France

Personalised recommendations