Advertisement

L’accouchement de nos ancêtres était-il dystocique ?

Estimation du risque de disproportion fœtopelvienne chez l’Homme actuel et les homininés fossiles
  • P. Frémondière
  • F. Marchal
Article / Article

Résumé

Le but de ce travail est d’évaluer le risque de disproportion fœtopelvienne au sein d’espèces d’homininés fossiles. L’observation de 92 cas d’accouchements actuels a permis de recueillir les dimensions du bassin maternel, du crâne fœtal et l’issue du travail (physiologique : n = 43, césarienne pour « disproportion fœtopelvienne » : n = 34 ou extraction instrumentale : n = 15). Les données fossiles proviennent d’une recherche bibliographique incluant 12 reconstructions de bassin et six crânes juvéniles. Les dimensions néonatales fossiles ont été estimées par deux approches : 1) à partir des dimensions des crânes juvéniles et de courbes de croissance humaine et de chimpanzé ; 2) en utilisant les capacités crâniennes néonatales estimées par DeSilva et Lesnik (2008). Malgré un taux d’erreur apparente de 35 %, une analyse discriminante linéaire (ADL) permet de reconnaître une zone d’accouchement eutocique, une zone d’accouchement dystocique et une zone intermédiaire où les variables maternofœtales ne permettent pas de déterminer l’issue du travail. Les combinatoires des couples « virtuels » fossiles entre les reconstructions de bassin et les estimations crâniennes fœtales ont été projetées a posteriori sur l’ADL et traduisent le plus souvent un accouchement eutocique. En effet, la probabilité d’appartenance au groupe d’accouchement eutocique des Australopithèques est en moyenne de 0,99 ± 0,01, de 0,76 ± 0,15 pour les Homo erectus s.l. et de 0,86 ± 0,08 pour les Néandertaliens.

Mots clés

Obstétrique Bassin Disproportion fœtopelvienne Australopithèques Homo erectus s.l. Néandertaliens 

Did our ancestors experience difficulties in childbirth?

Estimation of the risk of foetal-pelvic disproportion in modern human and fossil hominins

Abstract

The aim of this study was to assess the risk of foetal-pelvic disproportion in extinct hominins through a comparison of current obstetrical data with fossil data. For the modern sample, we collected pelvic diameters, foetal cranial diameters and delivery outcomes from 92 obstetrical cases (spontaneous vaginal, N = 43; c-section for foetal-pelvic disproportion, N = 34; operative vaginal, N = 15). For the fossil sample, the diameters of 12 pelvises and 6 juvenile skulls were gathered from the literature. Our estimations of neonatal skull sizes were based on (1) juvenile skull measurements and cranial growth curves and (2) the neonatal brain size estimations of DeSilva and Lesnik (2008). A linear discriminant analysis (LDA) was performed on the obstetrical cases. Despite a 35% misclassification error, the results showed a vaginal delivery range, an obstructed delivery range and an intermediate range where delivery outcomes were unpredictable. The multiple combinations between pelvic reconstructions and neonatal cranial estimations were projected onto the LDA and were mostly within the range of normal labour, with probabilities being within the range of normal labour (eutocia) at 0.99 ± 0.01 for Australopithecines; 0.76 ± 0.15 for Homo erectus s.l.; and 0.86 ± 0.08 for Neandertals.

Keywords

Obstetrics Pelvis Foetal-pelvic disproportion Australopithecines Homo erectus s.l. Neandertals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Garnier M, Delamare J (2000) Dictionnaire des termes de médecine. Maloine, Paris, 991 pGoogle Scholar
  2. 2.
    Magnin G (2011) Accouchement dystocique. In: Lansac J, Deschamps P, Oury JF (eds) Pratique de l’accouchement. Elsevier Masson, Paris, pp 196–207Google Scholar
  3. 3.
    Morgan MA, Thurnau GR, Fishburne JI (1986) The fetal-pelvic index as an indicator of fetal-pelvic disproportion — a preliminaryreport. Am J Obstet Gynecol 155(3):608–613PubMedGoogle Scholar
  4. 4.
    Morgan MA, Thurnau GR (1988) Efficacy of the fetal-pelvic index in patients requiring labor induction. Am J Obstet Gynecol 159(3):621–625PubMedGoogle Scholar
  5. 5.
    Thurnau GR, Morgan MA (1988) Efficacy of the fetal-pelvic index as a predicor of fetal-pelvic disproportion in women with abnormal labor patterns that require labor augmentations. Am J Obstet Gynecol 159(5):1168–1172PubMedGoogle Scholar
  6. 6.
    Morgan MA, Thurnau GR (1988) Efficacy of the fetal-pelvic index for delivery of neonates weighing 4,000 grams or greater: a preliminary-report. Am J Obstet Gynecol 158(5):1133–1137PubMedGoogle Scholar
  7. 7.
    Morgan MA, Thurnau GR (1992) Efficacy of the fetal-pelvic index in nulliparous women at high-risk for fetal-pelvic disproportion. Am J Obstet Gynecol 166(3):810–814PubMedCrossRefGoogle Scholar
  8. 8.
    Magnin P, Bremond A, Salomon B, et al (1975) Diagramme pour le pronostic des disproportions céphalopelviennes. Application à 300 observations de rétrecissements pelviens. J Gynecol Obstet Biol Reprod 4(7):975–987Google Scholar
  9. 9.
    Raynal P, Le Meaux JP, Chereau E (2005) Évolution anthropologique du bassin osseux des femmes. Gynecol Obstet Fertil 33(7–8):464–468PubMedCrossRefGoogle Scholar
  10. 10.
    Rosenberg K, Trevathan W (2002) Birth, obstetrics and human evolution. BJOG: Int J Obstet Gynaecol 109(11):1199–1206CrossRefGoogle Scholar
  11. 11.
    Abitbol MM (1996) Birth and Human Evolution. Anatomical and Obstetrical Mechanics in Primates, Westport, États-unisGoogle Scholar
  12. 12.
    Trevathan WR (1988) Fetal emergence patterns in evolutionary perspective. Am Anthropol 90(3):674–681CrossRefGoogle Scholar
  13. 13.
    Trevathan WR, Rosenberg K (2000) The shoulders follow the head: postcranial constraints on human childbirth. J Hum Evol 39(6):583–586PubMedCrossRefGoogle Scholar
  14. 14.
    Berge C, Orbansegebarth R, Schmid P (1984) Obstetrical interpretation of the australopithecine pelvic cavity. J Hum Evol 13(7):573–587CrossRefGoogle Scholar
  15. 15.
    Ponce de Leń MS, Golovanova L, Doronichev V, et al (2008) Neanderthal brain size at birth provides insights into the evolution of human life history. Proceedings of the National Academy of Sciences of the United States of America 105(37):13764–13768CrossRefGoogle Scholar
  16. 16.
    DeSilva JM (2011) A shift toward birthing relatively large infants early in human evolution. Proceedings of the National Academy of Sciences of the United States of America 108(3):1022–1027PubMedCrossRefGoogle Scholar
  17. 17.
    Malinas Y (1970) La cavité pelvienne d’Australopithecus prometheus (Dart). Essai de paléo-obstétrique. Bull Acad Soc Lorraines Sci 9(1):253–269Google Scholar
  18. 18.
    Leutenegger W (1972) Newborn size and pelvic dimensions of Australopithecus. Nature 240(5383):568–569PubMedCrossRefGoogle Scholar
  19. 19.
    Leutenegger W (1977) Functional interpretation of sacrum of Australopithecus africanus. South Afr J Sci 73(10):308–310Google Scholar
  20. 20.
    Häusler M, Schmid P (1995) Comparison of the pelves of Sts-14 and AL 288-1-Implications for birth and sexual dimorphism in australopithecines. J Hum Evol 29(4):363–383CrossRefGoogle Scholar
  21. 21.
    Berge C (1991) Functional interpretation of the dimensions of the pelvis of Australpithecus afarensis (AL 288-1). Zeitschrift für Morphologie und Anthropologie 78(3):321–330PubMedGoogle Scholar
  22. 22.
    Berge C (1993) L’évolution de la hanche et du pelvis des hominidés. Bipédie parturition, croissance, allométrie. Cahiers de Paléoanthropologie. CNRS Éditions, Paris, 112 pGoogle Scholar
  23. 23.
    Bouhallier J, Berge C, Penin X (2004) Analyse Procuste de la cavité pelvienne des australopithèques (AL 288-1, Sts 14), des humains et des chimpanzés: conséquences obstétricales. C R Palevol 3(4):295–304CrossRefGoogle Scholar
  24. 24.
    Schmid P (1986) A reconstruction of the skeleton of AL 288-1 (Hadar) and its consequences. Folia Primatologica 40(4):283–306CrossRefGoogle Scholar
  25. 25.
    von Lanz T, Wachsmuth, W (1984) Praktische Anatomie: Becken. Springer-Verlag, Berlin, Heidelberg, New York, Tokio, 96 pGoogle Scholar
  26. 26.
    Leutenegger W (1987) Neonatal brain size and neurocranial dimensions in pliocene hominids-Implications for obstetrics. J Hum Evol 16(3):291–296CrossRefGoogle Scholar
  27. 27.
    Martin RD (1983) Human Brain Evolution in an Ecological Context. 52nd James Arthur Lecture on the Evolution of the Human Brain, 1982. American Museum of Natural History, New York, 58 pGoogle Scholar
  28. 28.
    Correia H, Balseiro S, De Areia M (2005) Sexual dimorphism in the human pelvis: testing a new hypothesis. Homo-J Comparat Hum Biol 56(2):153–160CrossRefGoogle Scholar
  29. 29.
    Rosenberg K (2005) Évolution de la parturition. In: Dutour O, Hublin JJ, Vandermeersch B (eds) Origine et évolution des populations humaines. Comité des travaux historiques et scientifiques, Paris, pp 315–323Google Scholar
  30. 30.
    Tague RG, Lovejoy CO (1986) The obstetric pelvis of AL 288-1 (Lucy). J Hum Evol 15(4):237–255CrossRefGoogle Scholar
  31. 31.
    Ruff CB (1995) Biomechanics of the hip and birth in early Homo. Am J Phys Anthropol 98(4): 527–574PubMedCrossRefGoogle Scholar
  32. 32.
    Bouhallier J (2006) Évolution de la fonction obstétricale chez les Hominoïdes: analyse morphometrique tridimensionnelle de la cavité pelvienne chez les especes actuelles et fossiles. Thèse de doctorat d’État, paléontologie humaine, Muséum national d’Histoire naturelle, Paris, 223 pGoogle Scholar
  33. 33.
    Simpson SW, Quade J, Levin NE, et al (2008) A Female Homo erectus Pelvis from Gona, Ethiopia. Science 322(5904):1089–1092PubMedCrossRefGoogle Scholar
  34. 34.
    Dean MC, Smith BH (2009) Growth and development of the Nariokotome youth, KNM-WT 15000. In: Grine FE, Fleagle JG, Leakey, RE (eds) The First Human: origin and early evolution of the Genus Homo. Springer, New York, pp 101–120CrossRefGoogle Scholar
  35. 35.
    Trinkaus E (1984) Neanderthal Pubic Morphology and gestation length. Curr Anthropol 25(4):509–514CrossRefGoogle Scholar
  36. 36.
    Rosenberg K (1986) The Functional Significance of Neandertal Pubic Morphology. PhD Dissertation. University of Michigan: Ann Arbor, 237 pGoogle Scholar
  37. 37.
    Rak Y, Arensburg B (1987) Kebara-2 Neanderthal pelvis-1st look at a complete inlet. Am J Phys Anthropol 73(2):227–231PubMedCrossRefGoogle Scholar
  38. 38.
    Weaver TD, Hublin JJ (2009) Neandertal birth canal shape and the evolution of human childbirth. Proc Natl Acad Sci 106(20):8151–8156PubMedCrossRefGoogle Scholar
  39. 39.
    Rozenberg P (2007) Quelle place pour la radiopelvimétrie au XXI e siècle? Gynecol Obstet Fertil 35(1):6–12PubMedCrossRefGoogle Scholar
  40. 40.
    Marpeau L, Sergent F, Manson F, et al (2002) Mécanisme des stagnations de la dilatation en phase active du travail. Gynecol Obstet Fertil 30(4):282–285PubMedCrossRefGoogle Scholar
  41. 41.
    Troyer LR, Parisi VM (1992) Obstetric parameters affecting success in a trial of labor-designation of a scoring system. Obstet Gynecol 167(4):1099–1104CrossRefGoogle Scholar
  42. 42.
    Ferguson JE, Newberry YG, DeAngelis GA, et al (1998) The fetal-pelvic index has minimal utility in predicting fetal-pelvic disproportion. Am J Obstet Gynecol 179(5):1186–1192PubMedCrossRefGoogle Scholar
  43. 43.
    Fremondiere P, Fournie A (2011) Disproportion fœtopelvienne et radiopelvimétrie. Gynecol Obstet Fertil 39(1):8–11PubMedCrossRefGoogle Scholar
  44. 44.
    Berge C, Goularas D (2010) A new reconstruction of Sts 14 pelvis (Australopithecus africanus) from computed tomography and three-dimensional modeling techniques. J Hum Evol 58(3):262–272PubMedCrossRefGoogle Scholar
  45. 45.
    Lovejoy CO (1979) A reconstruction of the pelvis of AL 288-1 (Hadar Formation, Ethiopia). Am J Phys Anthropol 50(3):460Google Scholar
  46. 46.
    Robinson JT (1972) Early Hominid Posture and Locomotion. Univ. Chicago Press, Chicago, 361 pGoogle Scholar
  47. 47.
    Abitbol MM (1995) Reconstruction of the Sts-14 (Australopithecus africanus) pelvis. Am J Phys Anthropol 96(2):143–158PubMedCrossRefGoogle Scholar
  48. 48.
    Walker A, Ruff CB (1993) The reconstruction of the pelvis. In: Walker A, Leakey R (eds) The Nariokotome Homo erectus Skeleton. Harvard University Press, Cambridge, 228 pCrossRefGoogle Scholar
  49. 49.
    Simpson SW, Spurlock LB, Lovejoy CO, et al (2010) A new reconstruction of the KNM-WT 15000 juvenile male pelvis. Am J Phys Anthropol 141(Suppl 50):217Google Scholar
  50. 50.
    Ruff CB (2010) Body size and body shape in early hominins — implications of the Gona Pelvis. Am J Phys Anthropol 58(2):166–178Google Scholar
  51. 51.
    Arsuaga JL, Lorenzo C, Carretero JM, et al (1999) A complete human pelvis from the Middle Pleistocene of Spain. Nature 399(6733):255–258PubMedCrossRefGoogle Scholar
  52. 52.
    Bonmati A, Gomez-Olivencia A, Arsuaga JL, et al (2010) Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain. Proceedings of the National Academy of Sciences of the United State of America 107(43):18386–18391CrossRefGoogle Scholar
  53. 53.
    Alemseged Z, Spoor F, Kimbel WH, et al (2006) A juvenile early hominin skeleton from Dikika, Ethiopia. Nature 443(7109):296–301PubMedCrossRefGoogle Scholar
  54. 54.
    Falk D, Clarke R (2007) Brief communication: new reconstruction of the Taung endocast. Am J Phys Anthropol 134(4):529–534PubMedCrossRefGoogle Scholar
  55. 55.
    Holloway RL, Broadfield DC (2011) Technical note: The midline and endocranial volume of the Taung endocast. Am J Phys Anthropol 146(2):319–322PubMedCrossRefGoogle Scholar
  56. 56.
    Dart R (1925) Australopithecus africanus: the man-ape of South Africa. Nature 115:195–199CrossRefGoogle Scholar
  57. 57.
    Dekaban AS (1977) Tables of cranial and orbital measurements, cranial volume, and derived indexes in males and females from 7 days to 20-years-of-age. Ann Neurol 2(6):485–491PubMedCrossRefGoogle Scholar
  58. 58.
    Balzeau A, Grimaud-Herve D, Jacob T (2005) Internal cranial features of the Mojokerto child fossil (East Java, Indonesia). J Hum Evol 48(6):535–553PubMedCrossRefGoogle Scholar
  59. 59.
    Anton SC (1997) Developmental age and taxonomic affinity of the Mojokerto child, Java, Indonesia. Am J Phys Anthropol 102(4):497–514PubMedCrossRefGoogle Scholar
  60. 60.
    Coqueugniot H, Hublin JJ, Veillon F, et al (2004) Early brain growth in Homo erectus and implications for cognitive ability. Nature 431(7006):299–302PubMedCrossRefGoogle Scholar
  61. 61.
    Patte E (1957) L’enfant néanderthalien du Pech de L’Azé. Masson, Paris, 234 pGoogle Scholar
  62. 62.
    Madre-Dupouy M (1992) L’enfant du Roc de Marsal (Dordogne, France), étude analytique et comparative. Cahiers de paléoanthropologie, CNRS Éditions, Paris, 784 pGoogle Scholar
  63. 63.
    Dean C, Leakey MG, Reid D, et al (2001) Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature 414(6864):628–631PubMedCrossRefGoogle Scholar
  64. 64.
    Coqueugniot H, Braga J (2005) La croissance des Hominidés d’âge Plio-Pléistocène. In: Dutour O, Hublin JJ, Vandermeersch B (eds) Origine et évolution des populations humaines. Comité des travaux historiques et scientifiques, Paris, pp 56–58Google Scholar
  65. 65.
    Hamada Y, Udono T, Teramoto M, et al (2004) Body, head, and facial growth: comparison between macaques (Macaca fuscata) and chimpanzee (Pan troglodytes) based on somatometry. Ann Anat 186(5–6):451–461PubMedCrossRefGoogle Scholar
  66. 66.
    Leigh SR (2006) Brain ontogeny and life history in Homo erectus. J Hum Evol 50(1):104–108PubMedCrossRefGoogle Scholar
  67. 67.
    Zollikofer CPE, Ponce de Leń MS (2010) The evolution of hominin ontogenies. Semin Cell Develop Biol 21(4):441–452CrossRefGoogle Scholar
  68. 68.
    Remontet L, Mamelle N, Locard E, et al (1999) Courbes de croissance de la naissance à six ans: croissance en poids, taille et périmètre crânien selon le sexe. Arch Pediatr 6(5):520–529PubMedCrossRefGoogle Scholar
  69. 69.
    Sempé M (1979) Auxologie, méthode et séquences. Théraplix, Paris, 205 pGoogle Scholar
  70. 70.
    Ponce de León MS, Zollikofer CP (2001) Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature 412(6846):534–538PubMedCrossRefGoogle Scholar
  71. 71.
    Rozzi, FV, de Castro JM (2004) Surprisingly rapid growth in Neanderthals. Nature 428(6986):936–939CrossRefGoogle Scholar
  72. 72.
    Dean MC, Stringer CB, Bromage TG (1986) Age at death of the neanderthal child from devils tower, Gibraltar and the implications for studies of general growth and development in Neanderthals. Am J Phys Anthropol 70(3):301–309PubMedCrossRefGoogle Scholar
  73. 73.
    Coqueugniot H, Hublin JJ (2007) Endocranial volume and brain growth in immature Neandertals. Periodicum Biologorum 109(4):379–385Google Scholar
  74. 74.
    Sykora S (2005) Appromixations of Ellipse Perimeters and of the Complete Elliptic Integral E(x). Review of known formulae. Doi: 10.3247/SL1Math05.004Google Scholar
  75. 75.
    DeSilva JM, Lesnik JJ (2008) Brain size at birth throughout human evolution: a new method for estimating neonatal brain size in hominins. J Hum Evol 55(6):1064–1074PubMedCrossRefGoogle Scholar
  76. 76.
    Rushton P (1997) Cranial size and IQ in Asian Americans from birth to age seven. Intelligence 25(1):7–20CrossRefGoogle Scholar
  77. 77.
    Spörri S, Thoeny HC, Raio L, et al (2002) MR imaging pelvimetry: a useful adjunct in the treatment of women at risk for dystocia? Am J Roentgenol 179(1):137–144CrossRefGoogle Scholar
  78. 78.
    Lenhard MS, Johnson TR, Weckbach S, et al (2010) Pelvimetry revisited: analyzing cephalopelvic disproportion. Eur J Radiol 74(3):108–112CrossRefGoogle Scholar
  79. 79.
    Wong KS, Wong AY, Tse LH, et al (2003) Use of fetal-pelvic index in the prediction of vaginal birth following previous cesarean section. J Obstet Gynaecol Res 29(2):104–108PubMedCrossRefGoogle Scholar
  80. 80.
    Zaretsky MV, Alexander JM, McIntire DD, et al (2005) Magnetic resonance imaging pelvimetry and the prediction of labor dystocia. Obstet Gynecol 106(5):919–926PubMedCrossRefGoogle Scholar
  81. 81.
    Keller TM, Rake A, Michel SCA, et al (2003) Obstetric MR pelvimetry: reference values and evaluation of inter- and intraobserver error and intraindividual variability. Radiology 227(1):37–43PubMedCrossRefGoogle Scholar
  82. 82.
    Leutenegger W (1974) Functional aspects of pelvic morphology in simian primates. J Hum Evol 3(3):207–222CrossRefGoogle Scholar
  83. 83.
    Malinas Y, Favier M (1979) Mécanique obstétricale. Masson, Paris, 100 pGoogle Scholar
  84. 84.
    Bouhallier J, Berge C (2006) Analyse morphologique et fonctionnelle du pelvis des primates Catarrhiniens: conséquences pour l’obstétrique. C R Palevol 5(3–4):551–560CrossRefGoogle Scholar
  85. 85.
    Tague RG (2000) Do big females have big pelves? Am J Phys Anthropol 112(3):377–393PubMedCrossRefGoogle Scholar
  86. 86.
    Tague RG (1991) Commonalities in Dimorphism and Variability in the Anthropoid Pelvis, with implications for the fossil record. J Hum Evol 21(3):153–176CrossRefGoogle Scholar
  87. 87.
    Franciscus RG (2009) When did the modern human pattern of childbirth arise? New insights from an old Neandertal pelvis. Proc Natl Acad Sci 106(23):9125–9126PubMedCrossRefGoogle Scholar
  88. 88.
    Korhonen U, Solja R, Laitinen J, et al (2010) MR pelvimetry measurements, analysis of inter- and intra-observer variation. Eur J Radiol 75(2):56–61CrossRefGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Springer-Verlag France 2012

Authors and Affiliations

  1. 1.UMR 7268, Unité d’Anthropologie bioculturelle, Droit, Éthique, SantéUniversité de la Méditerranée, Faculté de Médecine, secteur NordMarseille cedex 15France

Personalised recommendations