Première description de l’endocrâne de Cro-Magnon 1 et étude de la variation et de l’évolution du cerveau chez les Hommes anatomiquement modernes

  • A. Balzeau
  • D. Grimaud-Hervé
  • F. Détroit
  • R. L. Holloway
  • B. Combès
  • S. Prima
Article / Article

Résumé

La paléoneurologie est un champ de recherche important dans le cadre des études sur l’évolution humaine. Les variations de taille et de forme de l’endocrâne sont en effet utiles pour différencier les différentes espèces d’homininés, alors que les asymétries cérébrales sont reliées au comportement et aux capacités cognitives. Pourtant, notre connaissance de l’évolution et de la variation du cerveau d’Homo sapiens, depuis l’apparition de notre espèce, est très lacunaire. Dans un premier temps, nous détaillons l’anatomie et les asymétries (en proposant une méthode innovante de quantification de ces dernières) de l’endocrâne de Cro-Magnon 1, un des représentants européens les mieux conservés et les plus anciens des Hommes anatomiquement modernes, qui n’avait encore pu être analysé. Puis, une étude comparative entre un échantillon de spécimens fossiles et actuels d’Homo sapiens est effectuée. Bien qu’un substrat anatomique commun soit présent, certaines différences de taille et d’organisation ont été observées entre ces deux échantillons. Ces résultats illustrent la plasticité du cerveau au sein de notre espèce et documentent une variabilité anatomique encore inconnue.

Mots clés

Endocrânes Homo sapiens Cro-Magnon Évolution cérébrale Paléoneurologie Asymétrie 

First description of the Cro-Magnon 1 endocast and study of brain variation and evolution in anatomically modern Homo sapiens

Abstract

Paleoneurology is an important research field for studies of human evolution. Variations in the size and shape of the endocranium are a useful means of distinguishing between different hominin species, while brain asymmetry is related to behaviour and cognitive capacities. The evolution of the hominin brain is well documented and substantial literature has been produced on this topic, mostly from studies of endocranial casts, or endocasts. However, we have only little information about variations in endocranial form, size and shape in fossil anatomically modern Homo sapiens (AMH) and about the evolution of the brain since the emergence of our species. One good illustration of this limited knowledge is that one of the first fossil H. sapiens discovered, in 1868, that is also one of the oldest well-preserved European specimen has never been studied in what concerns its endocranial morphology. The first aim of this study was to propose a detailed description of the endocranial anatomy of Cro-Magnon 1, using imaging methodologies, including an original methodology to quantify endocranial asymmetries. The second aim was to compare samples of the fossil and extant AMH in order to document differences in the form, size and shape of the endocasts. A decrease in absolute endocranial size since the Upper Palaeolithic was noticeable. Although both extant and older endocrania have the same anatomical layout, we nonetheless found non-allometric differences in the relative size and organization of different parts of the brain. These document previously unknown intraspecific anatomical variations in the H. sapiens brain, demonstrating its plasticity, with some areas (frontal and occipital lobes) having been more subject to variation than others (parietal, temporal or cerebellar lobes). That may be due to constraints to maintain an optimal performance while reducing in size and changing in shape during our recent evolution.

Keywords

Endocasts Homo sapiens Cro-Magnon Brain evolution Paleoneurology Asymmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Grimaud-Hervé D (1997) L’évolution de l’encéphale chez Homo erectus et Homo sapiens: exemples de l’Asie et de l’Europe, Cahiers de Paléoanthropologie, CNRS, Paris, 406pGoogle Scholar
  2. 2.
    Holloway RL, Broadfield DC, Yuan MS (2004) The human fossil record: brain endocasts, paleoneurological evidence. Wiley, Hoboken, New Jersey, 315pCrossRefGoogle Scholar
  3. 3.
    Sousa de A, Wood B (2007) The hominin fossil record and the emergence of the modern human central nervous system. In: Kaas JA (ed) Evolution of nervous systems: a comprehensive reference, Vol. 4: the evolution of primate nervous systems. Elsevier, Oxford, pp 291–336CrossRefGoogle Scholar
  4. 4.
    Lartet L (1868) Une sépulture des troglodytes du Périgord. Bull Soc Anthropol Paris 3:335–349CrossRefGoogle Scholar
  5. 5.
    Broca P (1868) Sur les crânes et ossements des Eyzies. Bull Soc Anthropol Paris 3:350–392CrossRefGoogle Scholar
  6. 6.
    Broca P (1868) Description sommaire des restes humains découverts dans les grottes de Cro-Magnon près de Les Eyzies. Ann Sci Nat Zool Paléontol 10:145–155Google Scholar
  7. 7.
    Discussion collective (Bertillon, Pruner-Bey, Lagneau, Broca, Welcker, Hamy, de Mortillet, Gaussin, Bertrand, Halleguen, Girod) (1868) Sur les crânes et les ossements des Eyzies. Bull Soc Anthropol Paris 3:416–446, 454–514, 554–78CrossRefGoogle Scholar
  8. 8.
    Quatrefages de A, Hamy E (1874) La race de Cro-Magnon dans l’espace et dans le temps. Bull Soc Anthropol Paris 9:260–266CrossRefGoogle Scholar
  9. 9.
    Blanckaert C (2010) Les « trois glorieuses de 1859 » [Broca, Boucher de Perthes, Darwin] et la genèse du concept de races historiques. Bull Mem Soc Anthropol Paris 22:3–16CrossRefGoogle Scholar
  10. 10.
    Vallois HV, Billy G (1965a) Nouvelles recherches sur les hommes fossiles de l’abri de Cro-Magnon. L’anthropologie 61:47–74Google Scholar
  11. 11.
    Vallois HV, Billy G (1965b) Nouvelles recherches sur les hommes fossiles de l’abri de Cro-Magnon. L’anthropologie 61:249–272Google Scholar
  12. 12.
    Gambier D (1986) Etude des os d’enfants du gisement aurignacien de Cro-Magnon, Les Eyzies (Dordogne). Bull Mém Soc Anthropol Paris 3:13–25CrossRefGoogle Scholar
  13. 13.
    Pales L (1930) Paléopathologie et pathologie comparative, Masson, ParisGoogle Scholar
  14. 14.
    Dastugue J (1967) Pathologie des hommes fossiles de l’abri de Cro-Magnon. L’anthropologie 71:479–492Google Scholar
  15. 15.
    Thillaud PL (1981) L’histiocytose X au Paléolithique (sujet no1 de Cro-Magnon), problématique du diagnostic ostéo-archéologique. L’anthropologie 885:219–239Google Scholar
  16. 16.
    Movius HL (1969) The abri of Cro-Magnon, Les Eyzies (Dordogne) and the probable age of the contained burials on the basis of the evidence of the nearby abri Pataud. Anur Estud Atlant 15:323–344Google Scholar
  17. 17.
    Henry-Gambier D (2002) Les fossiles de Cro-Magnon (Les Eyzies-de-Tayac, Dordogne), nouvelles données sur leur position chronologique et leur attribution culturelle. Bull Mém Soc Anthropol Paris 14:89–112Google Scholar
  18. 18.
    Henneberg M (1998) Evolution of the human brain: is bigger better? Clin Exp Pharmacol Physiol 25:745–749PubMedCrossRefGoogle Scholar
  19. 19.
    Holloway RL (2008) The Human Brain Evolving: A Personal Retrospective. Ann Rev Anthropol 37(1):1–19CrossRefGoogle Scholar
  20. 20.
    McDougall I, Brown FH, Fleagle JG (2005) Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433:733–736PubMedCrossRefGoogle Scholar
  21. 21.
    White TD, Asfaw B, DeGusta D, et al (2003) Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423:742–747PubMedCrossRefGoogle Scholar
  22. 22.
    Crevecoeur I, Rougier H, Grine F, Froment A (2009) Modern human cranial diversity in the Late Pleistocene of Africa and Eurasia: evidence from Nazlet Khater, Peştera cu Oase, and Hofmeyr. Am J Phys Anthropol 140:347–358PubMedCrossRefGoogle Scholar
  23. 23.
    Schwartz JH, Tatersall I (2010) Fossil evidence for the origin of Homo sapiens. Yrbk Phys Anthropol 143:94–121CrossRefGoogle Scholar
  24. 24.
    Wu X, Wu L, Que J, Wang Y (2008) The brain morphology of Homo Liujiang cranium fossil by three-dimensional computed tomography. Chin Sci Bull 53:2513–2519CrossRefGoogle Scholar
  25. 25.
    Storm P (1995) The evolutionary significance of the Wajak skulls. Scripta Geologica 110:1–247Google Scholar
  26. 26.
    Détroit F (2002) Origine et évolution des Homo sapiens en Asie du Sud-Est: descriptions et analyses morphométriques de nouveaux fossiles, Ph.D. Dissertation, Muséum national d’Histoire naturelle, Paris, France, 444pGoogle Scholar
  27. 27.
    Antón SC, Weinstein KJ (1999) Artificial cranial deformation and fossil Australians revisited. J Hum Evol 36:195–209PubMedCrossRefGoogle Scholar
  28. 28.
    Kranioti F, Holloway R, Senck S, et al (2011) Virtual assessment of the endocranial morphology of the early modern European fossil calvaria from Ciocliovina, Romania. Anat Rec 194:1083–1092CrossRefGoogle Scholar
  29. 29.
    Rougier H, Milota Ş, Rodrigo R, et al (2007) Peştera cu Oase 2 and the cranial morphology of early modern europeans. Proc Natl Acad Sci 4:1165–1170CrossRefGoogle Scholar
  30. 30.
    Trinkaus E, Moldovan O, Milota Ş, et al (2003) An early modern human from the Peştera cu Oase, Romania. Proc Natl Acad Sci 100:11231–11236PubMedCrossRefGoogle Scholar
  31. 31.
    Badawi-Fayad J, Yazbeck C, Balzeau A, et al (2005) Multidetector row CT scanning in Paleoanthropology at various tube current settings and scanning mode. Surg Radiol Anat 27:536–543PubMedCrossRefGoogle Scholar
  32. 32.
    Balzeau A (2005) Spécificités des caractères morphologiques internes du squelette céphalique chez Homo erectus, Ph.D. Dissertation, Muséum national d’Histoire naturelle, Paris, France, 394pGoogle Scholar
  33. 33.
    Balzeau A, Jacob T, Indriati E (2002) Structures crâniennes internes de l’Homo erectus Sambungmacan 1 (Java, Indonésie). CR Palevol 1:305–310CrossRefGoogle Scholar
  34. 34.
    Balzeau A, Grimaud-Hervé D, Jacob T (2005) Internal cranial features of the Mojokerto child fossil (East Java, Indonesia). J Hum Evol 48:535–553PubMedCrossRefGoogle Scholar
  35. 35.
    Balzeau A, Gilissen E, Wendelen W, Coudyzer W (2009) Internal cranial anatomy of the type specimen of Pan paniscus and available data for study. J Hum Evol 56:205–208PubMedCrossRefGoogle Scholar
  36. 36.
    Harvati K, Gunz P, Grigorescu D (2007) Cioclovina (Romania): affinities of an early modern European. J Hum Evol 53:732–746PubMedCrossRefGoogle Scholar
  37. 37.
    Grimaud-Hervé D, Lordkipanidze D (2010) The fossil hominid brains of Dmanisi: D 2280 and D 2282. In: Broadfield D, Yuan M, Schick K, Toth N (eds) The human brain evolving: paleoneurological studies in honour of Ralph L. Holloway. Stone Age Institute Publication Series, Indiana, pp 59–82Google Scholar
  38. 38.
    Balzeau A, Holloway RL, Grimaud-Hervé D (2012) Variations and asymmetries in regional brain surface in the genus Homo. J Hum Evol 62:696–706PubMedCrossRefGoogle Scholar
  39. 39.
    Hammer O, Harper DAT, Ryan PD (2001) PAST: Palaeontological Statistics Software Package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  40. 40.
    Miller RL, Kahn JS (1962) Statistical analysis in the geological sciences. John Wiley & Sons, New York, 483pGoogle Scholar
  41. 41.
    Smith RJ (2009) Use and misuse of the reduced major axis for line-fitting. Am J Phys Anthropol 140:476–486PubMedCrossRefGoogle Scholar
  42. 42.
    Sokal RR, Braumann CA (1980) Significance tests for coefficients of variation and variability profiles. Syst Zool 29:50–66CrossRefGoogle Scholar
  43. 43.
    Wood B, Lieberman DE (2001) Craniodental variation in Paranthropus boisei: a developmental and functional perspective. Am J Phys Anthropol 116:13–25PubMedCrossRefGoogle Scholar
  44. 44.
    Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  45. 45.
    Palmer AR (1994) Fluctuating asymmetry analyses: a primer. In: Markow TA (ed) Developmental instability: its origins and evolutionary implications. Kluwer, Dordrecht, Netherlands pp 335–364CrossRefGoogle Scholar
  46. 46.
    Combès B, Hennessy R, Waddington J, Roberts N, Prima S (2008) Automatic symmetry plane estimation of bilateral objects in point clouds. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’2008), June 2008, Anchorage, United StatesGoogle Scholar
  47. 47.
    Combès B, Prima S (2010) An efficient EM-ICP algorithm for symmetric consistent non-linear registration of point sets. 13th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’2010), September 2010, Beijing, ChinaGoogle Scholar
  48. 48.
    Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc 39 (1):1–38Google Scholar
  49. 49.
    Holloway RL, de la Coste-Lareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110.PubMedCrossRefGoogle Scholar
  50. 50.
    Balzeau A, Gilissen E, Grimaud-Hervé D (2012) Shared pattern of quantified endocranial shape asymmetries among anatomically modern humans, great apes and fossil hominins. Plos One 7(1): e29581CrossRefGoogle Scholar
  51. 51.
    Beals KL, Smith CL, Dodd SM (1984) Brain size, cranial morphology, climate, and time machines. Curr Anthropol 25:301–330CrossRefGoogle Scholar
  52. 52.
    Balzeau A, Crevecoeur I, Rougier H, et al (2010) Applications of imaging methodologies to paleoanthropology: beneficial results relating to the preservation, management and development of collections. CR Palevol 9:265–275CrossRefGoogle Scholar
  53. 53.
    Tillier AM (1977) La pneumatisation du massif craniofacial chez les hommes actuels et fossiles. Bull Mem Soc Anthropol Paris XIII(4):177–189Google Scholar
  54. 54.
    O’Higgins P, Bastir M, Kupczik K (2006) Shaping the human face. Int Congr Ser 1296:55–73CrossRefGoogle Scholar
  55. 55.
    Balzeau A, Badawi-Fayad J (2005) La morphologie externe et interne de la région sus-orbitaire est-elle corrélée à des contraintes biomécaniques ? Analyses structurelles des populations d’Homo sapiens d’Afalou Bou Rhummel (Algérie) et de Taforalt (Maroc). Bull Mem Soc Anthropol Paris 17:185–197Google Scholar
  56. 56.
    Zollikofer CPE, Ponce de León MS, Schmitz RW, Stringer CB (2008) New insights into mid-late Pleistocene fossil hominin paranasal sinus morphology. Anat Rec 291:1506–1516CrossRefGoogle Scholar
  57. 57.
    Balzeau A, Grimaud-Hervé D (2006) Cranial base morphology and temporal bone pneumatization in Asian Homo erectus. J Hum Evol 51:350–359PubMedCrossRefGoogle Scholar
  58. 58.
    Balzeau A, Radovčić J (2008) Variation and modalities of growth and development of the temporal bone pneumatization in Neandertals. J Hum Evol 54:546–567PubMedCrossRefGoogle Scholar
  59. 59.
    Holloway RL (1981) Volumetric and asymmetry determinations on recent hominid endocasts: Spy I and II, Djebel Ihroud I, and the Salé Homo erectus specimens, with some notes on neandertal brain size. Am J Phys Anthropol 55:385–393PubMedCrossRefGoogle Scholar
  60. 60.
    Holloway RL (1981) The Indonesian Homo erectus brain endocasts revisited. Am J Phys Anthropol 55:503–521CrossRefGoogle Scholar
  61. 61.
    LeMay M (1976) Morphological cerebral asymmetries of modern man, fossil man and nonhuman primate. Ann NY Acad Sci 280:349–366PubMedCrossRefGoogle Scholar
  62. 62.
    LeMay M (1977) Asymmetries of the skull and handedness. J Neurol Sci 32:243–253PubMedCrossRefGoogle Scholar
  63. 63.
    LeMay M, Billig MS, Geschwind N (1982) Asymmetries of the brains and skulls of nonhuman primates. In: Falk D, Armstrong E (eds) Primate brain evolution. Methods and concepts. Plenum Press, New York, pp 263–277CrossRefGoogle Scholar
  64. 64.
    LeMay M, Kido DK (1978) Asymmetries of the cerebral hemispheres on computed tomograms. J Comput Assist Tomogr 2:471–476CrossRefGoogle Scholar
  65. 65.
    Galaburda AM, LeMay M, Kemper TL, et al (1978) Right-left asymmetries in the brain. Science 199:852–856PubMedCrossRefGoogle Scholar
  66. 66.
    Kertesz A, Black SE, Polk M, et al (1986) Cerebral asymmetries on magnetic resonance imaging. Cortex 22:117–127PubMedGoogle Scholar
  67. 67.
    Kertesz A, Polk M, Black SE, et al (1990) Sex, handedness, and the morphometry of cerebral asymmetries on magnetic resonance imaging. Brain Res 530:40–48PubMedCrossRefGoogle Scholar
  68. 68.
    Falk D, Hildebolt C, Cheverud J, et al (1990) Cortical asymmetries in frontal lobes of rhesus monkeys (Macaca mulatta). Brain Res 512:40–45PubMedCrossRefGoogle Scholar
  69. 69.
    Cain DP, Wada JA (1979) An anatomical asymmetry in the baboon brain. Brain Behav Evol 16:222–226PubMedCrossRefGoogle Scholar
  70. 70.
    Cheverud J, Falk D, Hildebolt C, et al (1990) Heritability and association of cortical petalias in rhesus macaques (Macaca mulatta). Brain Behav Evol 35:368–372PubMedCrossRefGoogle Scholar
  71. 71.
    LeMay M (1985) Asymmetries of the brains and skulls of nonhuman primates. In: Glick SD (ed) Cerebral lateralization in nonhuman species. Academic Press, New York, pp 233–245Google Scholar
  72. 72.
    Hopkins WD, Marino L (2000) Asymmetries in cerebral width in nonhuman primate brains as revealed by magnetic resonance imaging (MRI). Neuropsychologia 38:493–499PubMedCrossRefGoogle Scholar
  73. 73.
    Pilcher DL, Hammock EAD, Hopkins WD (2001) Cerebral volumetric asymmetries in non-human primates: a magnetic resonance imaging study. Laterality 6:165–179PubMedGoogle Scholar
  74. 74.
    Tobias PV (1987) The brain of Homo habilis: a new level of organization in cerebral evolution. J Hum Evol 16:741–761CrossRefGoogle Scholar
  75. 75.
    Geschwind DH, Miller BL, DeCarli C, et al (2002) Heritability of lobar brain volumes in twin supports genetic models of cerebral laterality and handedness. Proc Natl Acad Sci 99:3176–3181PubMedCrossRefGoogle Scholar
  76. 76.
    Balzeau A, Grimaud-Hervé D, Gilissen E (2011) Where are inion and endinion? Variations of the exo- and endocranial morphology of the occipital bone during hominin evolution. J Hum Evol 61:488–502PubMedCrossRefGoogle Scholar
  77. 77.
    Toga AW, Thompson PM (2001) Maps of the brain. Anat Rec 265:37–53PubMedCrossRefGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Springer-Verlag France 2012

Authors and Affiliations

  • A. Balzeau
    • 1
  • D. Grimaud-Hervé
    • 1
  • F. Détroit
    • 1
  • R. L. Holloway
    • 2
  • B. Combès
    • 3
    • 4
    • 5
  • S. Prima
    • 3
    • 4
    • 5
  1. 1.Département de préhistoire du Muséum national d’Histoire naturelle, équipe de paléontologie humaineUMR 7194 du CNRSParisFrance
  2. 2.Department of AnthropologyColumbia UniversityNew YorkUSA
  3. 3.U746InsermRennesFrance
  4. 4.VisAGeS Project-TeamINRIARennesFrance
  5. 5.CNRS, UMR 6074, IRISAUniversity of Rennes-IRennesFrance

Personalised recommendations