Skip to main content
Log in

Grassland Yield Estimation Using Transfer Learning from Remote Sensing Data

  • AI Transfer
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

Grassland is one of the most important resources for dairy farmers around the world. Deeper insights into the properties of grassland enable new applications. In particular, site-specific yield information is valuable for objective farm resource planning, fertilization, and field logistics. The Sentinel-2 satellites provide multi-spectral images with a spatial resolution of \(10 \times 10\) m. According to recent studies, these satellite data are successfully used to predict the yield of arable crops. The biggest challenges for satellite data in the visible and near-infrared spectrum are atmospheric disturbances, such as clouds or fog. Current methods for approximating data between undisturbed satellite scans do not take weather data into account. We developed a novel approach to predict vegetation indices such as NDVI, EVI, NDWI, LAI, and FAPAR using multispectral satellite and weather data. Based on this model, transfer learning was introduced to train a grassland yield model. We compared artificial neural network architectures for predicting vegetation indices and grassland yields, including a multi-task formulation to additionally classify the crop types. The training samples for biomass prediction (n = 292) were collected in 2021. The crop prediction in the grassland crop category has an accuracy of 47.6%. The prediction of the vegetation indices and rgb values for three different time periods, ranging from 0 to 20 days after the last satellite scan, was done. The prediction of the leaf area index, for example, achieves a Pearson correlation of \(r=0.904\) and a mean absolute error (mae) of \(0.324 \frac{\text{m}^2}{\text{m}^2}\) for the period from 10 to 20 days from the latest satellite image. Finally, the Pearson correlation of the grassland fresh mass yield prediction was \(r=0.891\) with \(mae=1.245 \frac{\text{kg}}{\text{m}^2}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mateo-Sagasta J, Zadeh SM, Turral H, Burke J (2017) Water pollution from agriculture: a global review. Executive summary 13–15

  2. Sun L, Schulz K (2017) Spatio-temporal LAI modelling by integrating climate and MODIS LAI data in a mesoscale catchment. Remote Sens 9(2):144

    Article  Google Scholar 

  3. De Beurs KM, Henebry GM (2004) Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89(4):497–509

    Article  Google Scholar 

  4. Peñuelas J et al (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161(3):837–846

    Article  Google Scholar 

  5. Mazzia V, Khaliq A, Chiaberge M (2020) Improvement in land cover and crop classification based on temporal features learning from Sentinel-2 data using recurrent-convolutional neural network (R-CNN). Appl Sci 10(1):238

    Article  Google Scholar 

  6. Belgiu M, Csillik O (2018) Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens Environ 204:509–523

    Article  Google Scholar 

  7. Kandasamy S, Baret F, Verger A, Neveux P, Weiss M (2013) A comparison of methods for smoothing and gap filling time series of remote sensing observations-application to MODIS LAI products. Biogeosciences 10(6):4055–4071

    Article  Google Scholar 

  8. Pipia L, Amin E, Belda S, Salinero-Delgado M, Verrelst J (2021) Green LAI mapping and cloud gap-filling using Gaussian process regression in Google Earth Engine. Remote Sens 13(3):403

    Article  Google Scholar 

  9. Kurbanov RK, Zakharova NI (2020) Application of vegetation indexes to assess the condition of crops. Agric Mach Technol 14(4):4–11

    Google Scholar 

  10. Thenkabail PS, Smith RB, De Pauw E (2000) Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ 71(2):158–182

    Article  Google Scholar 

  11. Pageot Y, Baup F, Inglada J, Baghdadi N, Demarez V (2020) Detection of irrigated and rainfed crops in temperate areas using Sentinel-1 and Sentinel-2 time series. Remote Sens 12(18):3044

    Article  Google Scholar 

  12. Milesi C, Kukunuri M (2021) Crop yield estimation at gram panchayat scale by integrating field, weather and satellite data with crop simulation models. J Indian Soc Remote Sens 1–17. https://doi.org/10.1007/s12524-021-01372-z

  13. Schulze-Brüninghoff D, Wachendorf M, Astor T (2021) Remote sensing data fusion as a tool for biomass prediction in extensive grasslands invaded by L. polyphyllus. Remote Sens Ecol Conserv 7(2):198–213

    Article  Google Scholar 

  14. Zeng N, Ren X, He H, Zhang L, Li P, Niu Z (2021) Estimating the grassland aboveground biomass in the Three-River Headwater Region of China using machine learning and Bayesian model averaging. Environ Res Lett 16(11):3–11. https://doi.org/10.1088/1748-9326/ac2e85

    Article  Google Scholar 

  15. Zhou W, Li H, Xie L, Nie X, Wang Z, Du Z, Yue T (2021) Remote sensing inversion of grassland aboveground biomass based on high accuracy surface modeling. Ecol Indic 121:107215

    Article  Google Scholar 

  16. He Fan X, Zhang G, Long W, Zhang T, Wang X, Sun G, Zhou G, Shang H, Tian Z, Li D, Song XX (2022) Sentinel-2 images based modeling of grassland above-ground biomass using random forest algorithm: a case study on the Tibetan Plateau. Remote Sens 14(21):5321. https://doi.org/10.3390/rs14215321

    Article  Google Scholar 

  17. Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62(3):241–252. https://doi.org/10.1016/S0034-4257(97)00104-1. ISSN:0034-4257

  18. Vogelmann JE, Rock BN, Moss DM (1993) Red edge spectral measurements from sugar maple leaves. Int J Remote Sens 14(8):1563–1575. https://doi.org/10.1080/01431169308953986

    Article  Google Scholar 

  19. Jiang Z, Huete AR, Didan K, Miura T (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112(10):3833–3845. https://doi.org/10.1016/j.rse.2008.06.006 (ISSN:0034-4257)

    Article  Google Scholar 

  20. Gitelson A, Merzlyak MN (1994) Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. J Photochem Photobiol B: Biol 22(3):247–252

    Article  Google Scholar 

  21. Gao BC (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266

    Article  Google Scholar 

  22. Korhonen L, Packalen P, Rautiainen M (2017) Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens Environ 195:259–274

    Article  Google Scholar 

  23. Gower ST, Kucharik CJ, Norman JM (1999) Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens Environ 70(1):29–51. https://doi.org/10.1016/S0034-4257(99)00056-5. ISSN:0034-4257

  24. Baret F, Hagolle O, Geiger B, Bicheron P, Miras B, Huc M, Berthelot B, Niño F, Weiss M, Samain O, Roujean JL, Leroy M (2007) LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: part 1: principles of the algorithm. Remote Sens Environ 110(3):275–286. https://doi.org/10.1016/j.rse.2007.02.018. ISSN:0034-4257

  25. Hagolle O, Huc M, Desjardins C, Auer S, Richter R (2017) MAJA algorithm theoretical basis document. Zenodo. https://doi.org/10.5281/zenodo.1209633

    Article  Google Scholar 

  26. Agrarmarkt Austria (2021) Invekos Schläge Österreich 2021. https://www.data.gv.at/katalog/dataset/fa18db4f-a880-452b-bcbf-e4c0a88cb5d5. Accessed 28 April 2023

  27. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jozefowicz R, Jia Y, Kaiser L, Kudlur M, Levenberg J, Mané D, Schuster M, Monga R, Moore S, Murray D, Olah C, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow, large-scale machine learning on heterogeneous systems [Computer software]. https://doi.org/10.5281/zenodo.4724125. https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1

  28. Chollet F et al (2015) Keras. https://github.com/keras-team/keras/tree/tf-keras-2. Accessed 2 May 2023

  29. Kingma DP, Ba J (2017) Adam: a method for stochastic optimization. ArXiv [Cs.LG] v9:5-9 arXiv:1412.6980

  30. Clevers JP, Jongschaap R, van der Meer FD, de long SM (2002) Imaging spectrometry for agricultural applications. In: Imaging spectrometry. Springer, Dordrecht, pp 157–199

Download references

Acknowledgements

The Project is funded by the Austrian Research Promotion Agency (FFG) under the program “Small Scale Project” between July 2020 and November 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Eder.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eder, E., Riegler-Nurscher, P., Prankl, J. et al. Grassland Yield Estimation Using Transfer Learning from Remote Sensing Data. Künstl Intell (2023). https://doi.org/10.1007/s13218-023-00814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13218-023-00814-9

Keywords

Navigation