It’s the Meaning That Counts: The State of the Art in NLP and Semantics

Abstract

Semantics, the study of meaning, is central to research in Natural Language Processing (NLP) and many other fields connected to Artificial Intelligence. Nevertheless, how semantics is understood in NLP ranges from traditional, formal linguistic definitions based on logic and the principle of compositionality to more applied notions based on grounding meaning in real-world objects and real-time interaction. “Semantic” methods may additionally strive for meaningful representation of language that integrates broader aspects of human cognition and embodied experience, calling into question how adequate a representation of meaning based on linguistic signal alone is for current research agendas. We review the state of computational semantics in NLP and investigate how different lines of inquiry reflect distinct understandings of semantics and prioritize different layers of linguistic meaning. In conclusion, we identify several important goals of the field and describe how current research addresses them.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    Simply stated, intensions refer to content and extensions to reference. So, while the intension of ‘the current chancelor of Germany’ is unchanging, its extension (currently, Angela Merkel) will change with time. Certain ‘extensional’ predicates can nevertheless be given intensional semantics: smart at a time t can be understood as \(\lambda \)x\(\in \)D.x is smart at t.

  2. 2.

    Distributional models learn from the distribution of linguistic units in a text corpus, without necessitating external supervision.

  3. 3.

    Basically defined, vagueness refers to a lexical item with more than one possible instantiation (e.g. “child”); polysemy to an item with different but related senses (e.g. “arms”); and hyponomy to an item that is a member of a broader class (e.g. “rose” to “flower”).

References

  1. 1.

    Abend O, Rappoport A (2013) Universal Conceptual Cognitive Annotation (UCCA). In: Proceedings of ACL, pp 228–238. http://aclweb.org/anthology/P13-1023

  2. 2.

    Abend O, Rappoport A (2017) The state of the art in semantic representation. In: Proceedings of the 55th annual meeting of the association for computational linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Vancouver, Canada, pp 77–89. https://doi.org/10.18653/v1/P17-1008, https://www.aclweb.org/anthology/P17-1008

  3. 3.

    Abzianidze L, Bos J (2019) Thirty musts for meaning banking. In: Proceedings of the first international workshop on designing meaning representations, Association for Computational Linguistics, Florence, Italy, pp 15–27. https://doi.org/10.18653/v1/W19-3302, https://www.aclweb.org/anthology/W19-3302

  4. 4.

    Anderson JR (2005) Cognitive psychology and its implications. Macmillan, New York

    Google Scholar 

  5. 5.

    Andreas J, Klein D (2016) Reasoning about pragmatics with neural listeners and speakers. In: Proceedings of the 2016 conference on empirical methods in natural language processing, association for computational linguistics, Austin, Texas, pp 1173–1182. https://doi.org/10.18653/v1/D16-1125, https://www.aclweb.org/anthology/D16-1125

  6. 6.

    Artzi Y, Zettlemoyer L (2013) Weakly supervised learning of semantic parsers for mapping instructions to actions. Trans Assoc Comput Linguist 1:49–62

    Article  Google Scholar 

  7. 7.

    Atanasova P, Simonsen JG, Lioma C, Augenstein I (2020) Generating fact checking explanations. In: Proceedings of the 58th annual meeting of the association for computational linguistics, Association for Computational Linguistics, Online, pp 7352–7364. https://doi.org/10.18653/v1/2020.acl-main.656, https://www.aclweb.org/anthology/2020.acl-main.656

  8. 8.

    Augenstein I, Rocktäschel T, Vlachos A, Bontcheva K (2016) Stance detection with bidirectional conditional encoding. In: Proceedings of the 2016 conference on empirical methods in natural language processing, Association for Computational Linguistics, Austin, Texas, pp 876–885. https://doi.org/10.18653/v1/D16-1084, https://www.aclweb.org/anthology/D16-1084

  9. 9.

    Azhar MQ, Parsons S, Sklar E (2013) An argumentation-based dialogue system for human-robot collaboration. In: Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, Citeseer, pp 1353–1354

  10. 10.

    Banarescu L, Bonial C, Cai S, Georgescu M, Griffitt K, Hermjakob U, Knight K, Palmer M, Schneider N (2013) Abstract Meaning Representation for sembanking. In: Proceedings of the linguistic annotation workshop. http://aclweb.org/anthology/W13-2322

  11. 11.

    Barsalou LW (2008) Grounded cognition. Ann Rev Psychol 59:617–645

    Article  Google Scholar 

  12. 12.

    Barwise J, Cooper R (1981) Generalized quantifiers and natural language. Philosophy, language, and artificial intelligence. Springer, Berlin, pp 241–301

    Chapter  Google Scholar 

  13. 13.

    Bender EM, Friedman B (2018) Data statements for natural language processing: toward mitigating system bias and enabling better science. Trans Assoc Comput Linguist 6:587–604

    Article  Google Scholar 

  14. 14.

    Bender EM, Koller A (2020) Climbing towards NLU: on meaning, form, and understanding in the age of data. In: Proceedings of the 58th annual meeting of the association for computational linguistics, association for computational linguistics, Online, pp 5185–5198. https://doi.org/10.18653/v1/2020.acl-main.463, https://www.aclweb.org/anthology/2020.acl-main.463

  15. 15.

    Bender EM, Flickinger D, Oepen S, Packard W, Copestake A (2015) Layers of interpretation: On grammar and compositionality. In: Proceedings of the 11th international conference on Computational Semantics, pp 239–249

  16. 16.

    Bercher P, Behnke G, Kraus M, Schiller M, Manstetten D, Dambier M, Dorna M, Minker W, Glimm B, Biundo S (2021) Do it yourself but not alone: companion-technology for home improvement-bringing a planning-based interactive DIY assistant to life. Künstliche Intelligenz. https://doi.org/10.1007/s13218-021-00721-x

    Article  Google Scholar 

  17. 17.

    Bergen L, Levy R, Goodman N (2016) Pragmatic reasoning through semantic inference. Semantics and Pragmatics 9

  18. 18.

    Blanco E, Moldovan D (2011) Semantic representation of negation using focus detection. In: Proceedings of the 49th Annual meeting of the association for computational linguistics: human language technologies, Association for Computational Linguistics, Portland, Oregon, USA, pp 581–589. https://www.aclweb.org/anthology/P11-1059

  19. 19.

    Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  20. 20.

    Bonial C, Donatelli L, Lukin SM, Tratz S, Artstein R, Traum D, Voss C (2019a) Augmenting abstract meaning representation for human-robot dialogue. In: Proceedings of the first international workshop on designing meaning representations, Association for Computational Linguistics, Florence, Italy, pp 199–210. https://doi.org/10.18653/v1/W19-3322, https://www.aclweb.org/anthology/W19-3322

  21. 21.

    Bonial C, Traum D, Henry T, Lukin SM, Marge M, Artstein R, Pollard KA, Foots A, Baker AL, Voss CR (2019b) Dialogue structure annotation guidelines for army research laboratory (arl) human-robot dialogue corpus. Technical representation, CCDC Army Research Laboratory Adelphi United States

  22. 22.

    Bonial C, Donatelli L, Abrams M, Lukin SM, Tratz S, Marge M, Artstein R, Traum D, Voss C (2020) Dialogue-AMR: abstract meaning representation for dialogue. In: Proceedings of the 12th language resources and evaluation conference, European Language Resources Association, Marseille, France, pp 684–695. https://www.aclweb.org/anthology/2020.lrec-1.86

  23. 23.

    Bos J, Clark S, Steedman M, Curran JR, Hockenmaier J (2004) Wide-coverage semantic representations from a CCG parser. In: COLING 2004: proceedings of the 20th international conference on computational linguistics, COLING, Geneva, Switzerland, pp 1240–1246. https://www.aclweb.org/anthology/C04-1180

  24. 24.

    Bowman SR, Angeli G, Potts C, Manning CD (2015) A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 conference on empirical methods in natural language processing, association for computational linguistics, Lisbon, Portugal, pp 632–642. https://doi.org/10.18653/v1/D15-1075, https://www.aclweb.org/anthology/D15-1075

  25. 25.

    Bruni E, Tran GB, Baroni M (2011) Distributional semantics from text and images. In: Proceedings of the GEMS 2011 workshop on geometrical models of natural language semantics, pp 22–32

  26. 26.

    Bruni E, Tran NK, Baroni M (2014) Multimodal distributional semantics. J Artif Intell Res 49:1–47

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Bulat L, Kiela D, Clark S (2016) Vision and feature norms: improving automatic feature norm learning through cross-modal maps. In: Proceedings of the 2016 conference of the north american chapter of the association for computational linguistics: Human Language Technologies, pp 579–588

  28. 28.

    Bunt H (2020) Annotation of quantification: The current state of ISO 24617-12. In: 16th joint ACL - ISO workshop on interoperable semantic annotation PROCEEDINGS, European Language Resources Association, Marseille, pp 1–12. https://www.aclweb.org/anthology/2020.isa-1.1

  29. 29.

    Burnett H (2020) A persona-based semantics for slurs. Grazer Philos Stud 97(1):31–62

    Article  Google Scholar 

  30. 30.

    Cakmak M, Thomaz AL (2012) Designing robot learners that ask good questions. In: 2012 7th ACM/IEEE international conference on human–robot interaction (HRI), IEEE, pp 17–24

  31. 31.

    Cameron M (2012) Meaning: foundational and semantic theories. The Oxford handbook of medieval philosophy. Oxford University Press, Oxford, pp 342–362

    Google Scholar 

  32. 32.

    Chai JY, Gao Q, She L, Yang S, Saba-Sadiya S, Xu G (2018) Language to action: towards interactive task learning with physical agents. In: IJCAI, pp 2–9

  33. 33.

    Chomsky N (1957) Syntactic structures. Mouton, The Hague

    MATH  Book  Google Scholar 

  34. 34.

    Chomsky N (2014) Aspects of the theory of syntax, vol 11. MIT, New York

    Google Scholar 

  35. 35.

    Cohn-Gordon R, Goodman N, Potts C (2019) An incremental iterated response model of pragmatics. Proceedings of the Society for Computation in Linguistics (SCiL) 2019, pp 81–90. https://doi.org/10.7275/cprc-8x17, https://www.aclweb.org/anthology/W19-0109

  36. 36.

    Conneau A, Rinott R, Lample G, Williams A, Bowman S, Schwenk H, Stoyanov V (2018) XNLI: Evaluating cross-lingual sentence representations. In: Proceedings of the 2018 conference on empirical methods in natural language processing, association for computational linguistics, Brussels, Belgium, pp 2475–2485. https://doi.org/10.18653/v1/D18-1269, https://www.aclweb.org/anthology/D18-1269

  37. 37.

    Cooper R (2013) Type theory, interaction and the perception of linguistic and musical events. Language, music and interaction, communication, mind and language 3

  38. 38.

    Cooper R, Ginzburg J (2015) Type theory with records for natural language semantics. Wiley, New York, chap 12:375–407. https://doi.org/10.1002/9781118882139.ch12, https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118882139.ch12

  39. 39.

    Cooper R, Crouch D, Van Eijck J, Fox C, Van Genabith J, Jaspars J, Kamp H, Milward D, Pinkal M, Poesio M, et al. (1996) Using the framework. Technical representaion, Technical Report LRE 62-051 D-16, The FraCaS Consortium

  40. 40.

    Copeland BJ (2002) The genesis of possible worlds semantics. J Philos Logic 31(2):99–137

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Copestake A, Flickinger D, Pollard C, Sag IA (2005) Minimal recursion semantics: an introduction. Res Lang Comput 3(2):281–332. https://doi.org/10.1007/s11168-006-6327-9

    Article  Google Scholar 

  42. 42.

    Cresswell MJ (1982) The autonomy of semantics. Processes, beliefs, and questions. Springer, Berlin, pp 69–86

    Chapter  Google Scholar 

  43. 43.

    Cresswell MJ (1988) Semantic competence. Semantical essays. Springer, Berlin, pp 12–33

    MATH  Chapter  Google Scholar 

  44. 44.

    Dagan I, Glickman O, Magnini B (2005) The pascal recognising textual entailment challenge. Machine learning challenges workshop. Springer, Berlin, pp 177–190

    Google Scholar 

  45. 45.

    Danescu-Niculescu-Mizil C, Sudhof M, Jurafsky D, Leskovec J, Potts C (2013) A computational approach to politeness with application to social factors. In: Proceedings of the 51st annual meeting of the association for computational linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Sofia, Bulgaria, pp 250–259. https://www.aclweb.org/anthology/P13-1025

  46. 46.

    Das A, Datta S, Gkioxari G, Lee S, Parikh D, Batra D (2018) Embodied question answering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–10

  47. 47.

    Davis E, Marcus G (2015) Commonsense reasoning and commonsense knowledge in artificial intelligence. Commun ACM 58(9):92–103

    Article  Google Scholar 

  48. 48.

    Di Eugenio B (1991) Action representation for nl instructions. In: 29th annual meeting of the association for computational linguistics, pp 333–334

  49. 49.

    Donatelli L, Groschwitz J, Lindemann M, Koller A, Weißenhorn P (2020) Normalizing compositional structures across graphbanks. In: Proceedings of the 28th international conference on computational linguistics, international committee on computational linguistics, Barcelona, Spain (Online), pp 2991–3006. https://doi.org/10.18653/v1/2020.coling-main.267, https://www.aclweb.org/anthology/2020.coling-main.267

  50. 50.

    Eger S, Şahin GG, Rücklé A, Lee JU, Schulz C, Mesgar M, Swarnkar K, Simpson E, Gurevych I (2019) Text processing like humans do: Visually attacking and shielding NLP systems. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), Association for Computational Linguistics, Minneapolis, Minnesota, pp 1634–1647. https://doi.org/10.18653/v1/N19-1165, https://www.aclweb.org/anthology/N19-1165

  51. 51.

    Emerson G (2020) What are the goals of distributional semantics? In: Proceedings of the 58th annual meeting of the association for computational linguistics, Association for Computational Linguistics, Online, pp 7436–7453. https://doi.org/10.18653/v1/2020.acl-main.663, https://www.aclweb.org/anthology/2020.acl-main.663

  52. 52.

    Feldman J, Narayanan S (2004) Embodied meaning in a neural theory of language. Brain Lang 89(2):385–392

    Article  Google Scholar 

  53. 53.

    Feng Y, Lapata M (2010) Topic models for image annotation and text illustration. In: Human language technologies: the 2010 annual conference of the North American chapter of the association for computational linguistics, pp 831–839

  54. 54.

    Flickinger D, Zhang Y, Kordoni V (2012) DeepBank: a dynamically annotated treebank of the Wall Street Journal. In: Proceedings of workshop on treebanks and linguistic theories, pp 85–96. https://www.dfki.de/lt/publication_show.php?id=6619

  55. 55.

    Fodor JA (1975) The language of thought, vol 5. Harvard University Press, Cambridge

    Google Scholar 

  56. 56.

    Fodor JA, Lepore E (2002) The compositionality papers. Oxford University Press, Oxford

    Google Scholar 

  57. 57.

    Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architecture: a critical analysis. Cognition 28(1–2):3–71

    Article  Google Scholar 

  58. 58.

    Fox C, Lappin S (2008) Foundations of intensional semantics. Wiley, New York

    Google Scholar 

  59. 59.

    Frank MC, Goodman ND (2012) Predicting pragmatic reasoning in language games. Science 336(6084):998

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Franke M, Jäger G (2014) Pragmatic back-and-forth reasoning. Pragmatics, semantics and the case of scalar implicatures. Springer, Berlin, pp 170–200

    Chapter  Google Scholar 

  61. 61.

    Frege G (1892) Über sinn und bedeutung [on sense and reference]. Zeitsch Philos Philos Kritik 100:25–50

    Google Scholar 

  62. 62.

    Galley M, McKeown K, Hirschberg J, Shriberg E (2004) Identifying agreement and disagreement in conversational speech: Use of Bayesian networks to model pragmatic dependencies. In: Proceedings of the 42nd annual meeting of the association for computational linguistics (ACL-04), Barcelona, Spain, pp 669–676. https://doi.org/10.3115/1218955.1219040, https://www.aclweb.org/anthology/P04-1085

  63. 63.

    Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, Daumé III H, Crawford K (2018) Datasheets for datasets. arXiv preprint arXiv:180309010

  64. 64.

    Gibbs RW Jr (1984) Literal meaning and psychological theory. Cogn Sci 8(3):275–304

    Article  Google Scholar 

  65. 65.

    Ginzburg J (2008). In: Maienborn M, von Heusinger K. (Ed) Situation semantics and the ontology of natural language. p 267

  66. 66.

    Ginzburg J, Cooper R, Hough J, Schlangen D (2018) Incrementality and clarification/sluicing potential. Proc Sinn Bedeutung 21:463–480

    Google Scholar 

  67. 67.

    Gleize M, Shnarch E, Choshen L, Dankin L, Moshkowich G, Aharonov R, Slonim N (2019) Are you convinced? choosing the more convincing evidence with a Siamese network. In: Proceedings of the 57th annual meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, Italy, pp 967–976. https://doi.org/10.18653/v1/P19-1093, https://www.aclweb.org/anthology/P19-1093

  68. 68.

    Gonen H, Goldberg Y (2019) Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them. In: Proceedings of the 2019 workshop on widening NLP, Association for Computational Linguistics, Florence, Italy, pp 60–63. https://www.aclweb.org/anthology/W19-3621

  69. 69.

    Goodman ND, Frank MC (2016) Pragmatic language interpretation as probabilistic inference. Trends Cogn Sci 20(11):818–829

    Article  Google Scholar 

  70. 70.

    Goodman ND, Stuhlmüller A (2013) Knowledge and implicature: modeling language understanding as social cognition. Topics Cogn Sci 5(1):173–184

    Article  Google Scholar 

  71. 71.

    Gordon D, Kembhavi A, Rastegari M, Redmon J, Fox D, Farhadi A (2018) IQA: visual question answering in interactive environments. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4089–4098

  72. 72.

    Gorniak P, Roy D (2007) Situated language understanding as filtering perceived affordances. Cogn Sci 31(2):197–231

    Google Scholar 

  73. 73.

    Grice HP (1975) Logic and conversation. In: Speech acts, Brill, pp 41–58

  74. 74.

    Hall Maudslay R, Gonen H, Cotterell R, Teufel S (2019) It’s all in the name: Mitigating gender bias with name-based counterfactual data substitution. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China, pp 5267–5275. https://doi.org/10.18653/v1/D19-1530, https://www.aclweb.org/anthology/D19-1530

  75. 75.

    Harnad S (1990) The symbol grounding problem. Physica D 42(1–3):335–346

    Article  Google Scholar 

  76. 76.

    Herbelot A, Copestake A (2021) Ideal words: a vector-based formalisation of semantic competence. Künstliche Intelligenz. https://doi.org/10.1007/s13218-021-00719-5

  77. 77.

    Hershcovich D, Abend O, Rappoport A (2019) Content differences in syntactic and semantic representation. In: Proceedings of the 2019 conference of the north american chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), Association for Computational Linguistics, Minneapolis, Minnesota, pp 478–488. https://doi.org/10.18653/v1/N19-1047, https://www.aclweb.org/anthology/N19-1047

  78. 78.

    Hershcovich D, Schneider N, Dvir D, Prange J, de Lhoneux M, Abend O (2020) Comparison by conversion: Reverse-engineering UCCA from syntax and lexical semantics. In: Proceedings of the 28th international conference on computational linguistics, international committee on computational linguistics, Barcelona, Spain (Online), pp 2947–2966. https://doi.org/10.18653/v1/2020.coling-main.264, https://www.aclweb.org/anthology/2020.coling-main.264

  79. 79.

    Higginbotham J (2006) Truth and reference as the basis of meaning. Philosophy of language. Wiley, New York, p 58

    Google Scholar 

  80. 80.

    Higgins D, Sadock JM (2003) A machine learning approach to modeling scope preferences. Comput Linguist 29(1):73–96

    Article  Google Scholar 

  81. 81.

    Hockett CF, Hockett CD (1960) The origin of speech. Sci Am 203(3):88–97

    MATH  Article  Google Scholar 

  82. 82.

    Hough J, Purver M (2017) Probabilistic record type lattices for incremental reference processing. Modern perspectives in type-theoretical semantics. Springer, Berlin, pp 189–222

    Chapter  Google Scholar 

  83. 83.

    Hovy D, Spruit SL (2016) The social impact of natural language processing. In: Proceedings of the 54th annual meeting of the association for computational linguistics (volume 2: short papers), Association for Computational Linguistics, Berlin, Germany, pp 591–598. https://doi.org/10.18653/v1/P16-2096, https://www.aclweb.org/anthology/P16-2096

  84. 84.

    Howcroft DM, Demberg V (2017) Psycholinguistic models of sentence processing improve sentence readability ranking. In: Proceedings of the 15th conference of the european chapter of the association for computational linguistics: volume 1, long papers, Association for Computational Linguistics, Valencia, Spain, pp 958–968. https://www.aclweb.org/anthology/E17-1090

  85. 85.

    Jackendoff R (1992) What is a concept? Frames, fields, and contrasts New essays in semantics and lexical organization pp 191–208

  86. 86.

    Jacovi A, Marasović A, Miller T, Goldberg Y (2021) Formalizing trust in artificial intelligence: prerequisites, causes and goals of human trust in AI. 2010.07487

  87. 87.

    Jäger G (2012) Game theory in semantics and pragmatics. Semantics: an international handbook of natural language meaning. Int Rev Policy 3:2487–2516

    Google Scholar 

  88. 88.

    Jeretic P, Warstadt A, Bhooshan S, Williams A (2020) Are natural language inference models IMPPRESsive? Learning IMPlicature and PRESupposition. In: Proceedings of the 58th annual meeting of the association for computational linguistics, Association for Computational Linguistics, online, pp 8690–8705, https://doi.org/10.18653/v1/2020.acl-main.768, https://www.aclweb.org/anthology/2020.acl-main.768

  89. 89.

    Joshi P, Santy S, Budhiraja A, Bali K, Choudhury M (2020) The state and fate of linguistic diversity and inclusion in the NLP world. In: Proceedings of the 58th annual meeting of the association for computational linguistics, Association for Computational Linguistics, online, pp 6282–6293. https://doi.org/10.18653/v1/2020.acl-main.560, https://www.aclweb.org/anthology/2020.acl-main.560

  90. 90.

    Kamp H, Reyle U (2013) From discourse to logic: introduction to model theoretic semantics of natural language, formal logic and discourse representation theory, vol 42. Springer, Berlin

    Google Scholar 

  91. 91.

    Kao JT, Degen J, Goodman ND (2015) When “all” means not all: Nonliteral interpretations of universal quantifiers. In: Xprag conference

  92. 92.

    Kaplan D (1989) Demonstratives: an essay on the semantics, logic, metaphysics, and epistemology of demonstratives and other indexicals. In: Almog J, Perry J, Wettstein H (eds) Themes from Kaplan. Oxford University Press, Oxford (Themes from Kaplan)

    Google Scholar 

  93. 93.

    Kiela D, Clark S (2017) Learning neural audio embeddings for grounding semantics in auditory perception. J Artif Intell Res 60:1003–1030

    MathSciNet  Article  Google Scholar 

  94. 94.

    Kiela D, Bulat L, Clark S (2015) Grounding semantics in olfactory perception. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 2: short papers), pp 231–236

  95. 95.

    Kim J, Mooney R (2012) Unsupervised pcfg induction for grounded language learning with highly ambiguous supervision. In: Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning, pp 433–444

  96. 96.

    Kim N, Linzen T (2020) COGS: A compositional generalization challenge based on semantic interpretation. In: Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP), Association for Computational Linguistics, Online, pp 9087–9105. https://doi.org/10.18653/v1/2020.emnlp-main.731, https://www.aclweb.org/anthology/2020.emnlp-main.731

  97. 97.

    Kim N, Patel R, Poliak A, Xia P, Wang A, McCoy T, Tenney I, Ross A, Linzen T, Van Durme B, Bowman SR, Pavlick E (2019) Probing what different NLP tasks teach machines about function word comprehension. In: Proceedings of the eighth joint conference on lexical and computational semantics (*sem 2019), association for computational linguistics, Minneapolis, Minnesota, pp 235–249. https://doi.org/10.18653/v1/S19-1026, https://www.aclweb.org/anthology/S19-1026

  98. 98.

    Kipp M, Martin JC (2009) Gesture and emotion: Can basic gestural form features discriminate emotions? In: 2009 3rd international conference on affective computing and intelligent interaction and workshops, IEEE, pp 1–8

  99. 99.

    Kipp M, Neff M, Kipp KH, Albrecht I (2007) Towards natural gesture synthesis: evaluating gesture units in a data-driven approach to gesture synthesis. International workshop on intelligent virtual agents. Springer, Berlin, pp 15–28

    Chapter  Google Scholar 

  100. 100.

    Kipper K, Palmer M (2000) Representations of actions as an interlingua. In: NAACL-ANLP 2000 workshop: applied interlinguas: practical applications of interlingual approaches to NLP

  101. 101.

    Kiros R, Salakhutdinov R, Zemel RS (2014) Unifying visual-semantic embeddings with multimodal neural language models. arXiv preprint. arXiv:14112539

  102. 102.

    Kratzer A, Heim I (1998) Semantics in generative grammar, vol 1185. Blackwell, Oxford

    Google Scholar 

  103. 103.

    Krishnaswamy N, Pustejovsky J (2019) Generating a novel dataset of multimodal referring expressions. In: Proceedings of the 13th international conference on computational semantics-short papers, association for computational linguistics, Gothenburg, Sweden, pp 44–51. https://doi.org/10.18653/v1/W19-0507, https://www.aclweb.org/anthology/W19-0507

  104. 104.

    Kumar P, Bedathur S (2020) A survey on semantic parsing from the perspective of compositionality. arXiv preprint arXiv:200914116

  105. 105.

    Labov W (2011) Principles of linguistic change. Volume 1: Cognitive and cultural factors, vol 36. Wiley, New York

    Google Scholar 

  106. 106.

    Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ (2017) Building machines that learn and think like people. Behav Brain Sci 40:253

    Article  Google Scholar 

  107. 107.

    Lakoff G, Johnson M (2008) Metaphors we live by. University of Chicago Press, Chicago

    Google Scholar 

  108. 108.

    Larsson S (2015) Formal semantics for perceptual classification. J Logic Comput 25(2):335–369

    MathSciNet  MATH  Article  Google Scholar 

  109. 109.

    Lascarides A, Asher N (2008) Segmented discourse representation theory: dynamic semantics with discourse structure. Computing meaning. Springer, New York, pp 87–124

    Chapter  Google Scholar 

  110. 110.

    Lawrence J, Reed C (2019) Argument mining: a survey. Comput Linguist 45(4):765–818. https://doi.org/10.1162/coli_a_00364

    Article  Google Scholar 

  111. 111.

    Lazaridou A, Bruni E, Baroni M (2014) Is this a wampimuk? Cross-modal mapping between distributional semantics and the visual world. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 1: long papers), pp 1403–1414

  112. 112.

    Lazaridou A, Pham NT, Baroni M (2015) Combining language and vision with a multimodal skip-gram model. In: Proceedings of the 2015 conference of the north american chapter of the association for computational linguistics: human language technologies, Association for Computational Linguistics, Denver, Colorado, pp 153–163. https://doi.org/10.3115/v1/N15-1016, https://www.aclweb.org/anthology/N15-1016

  113. 113.

    Levinson SC (2000) Presumptive meanings: the theory of generalized conversational implicature. MIT Press, New York

    Book  Google Scholar 

  114. 114.

    Levy R, Bilu Y, Hershcovich D, Aharoni E, Slonim N (2014) Context dependent claim detection. In: Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers, Dublin City University and Association for Computational Linguistics, Dublin, Ireland, pp 1489–1500. https://www.aclweb.org/anthology/C14-1141

  115. 115.

    Lewis D (1970) General semantics. Synthese 22(1–2):18–67

    MATH  Article  Google Scholar 

  116. 116.

    Lewis D (2005) On tbe plurality of worlds. Central Works of Philosophy, Volume 5: The Twentieth Century: Quine and After 5:246

  117. 117.

    Linzen T (2020) How can we accelerate progress towards human-like linguistic generalization? In: Proceedings of the 58th annual meeting of the association for computational linguistics, Association for Computational Linguistics, Online, pp 5210–5217. https://doi.org/10.18653/v1/2020.acl-main.465, https://www.aclweb.org/anthology/2020.acl-main.465

  118. 118.

    Liu C, Yang S, Saba-Sadiya S, Shukla N, He Y, Zhu SC, Chai J (2016) Jointly learning grounded task structures from language instruction and visual demonstration. In: Proceedings of the 2016 conference on empirical methods in natural language processing, pp 1482–1492

  119. 119.

    Liu F, Flanigan J, Thomson S, Sadeh N, Smith NA (2015) Toward abstractive summarization using semantic representations. In: Proceedings of of NAACL, pp 1077–1086. http://aclweb.org/anthology/N15-1114

  120. 120.

    Liu H, Ma M, Huang L, Xiong H, He Z (2019) Robust neural machine translation with joint textual and phonetic embedding. In: Proceedings of the 57th annual meeting of the association for computational linguistics, association for computational linguistics, Florence, Italy, pp 3044–3049. https://doi.org/10.18653/v1/P19-1291, https://www.aclweb.org/anthology/P19-1291

  121. 121.

    Lupyan G, Bergen B (2016) How language programs the mind. Topics Cogn Sci 8(2):408–424

    Article  Google Scholar 

  122. 122.

    Mann WC, Thompson SA (1987) Rhetorical structure theory: a theory of text organization. University of Southern California, Information Sciences Institute Los Angeles

  123. 123.

    Manzini T, Yao Chong L, Black AW, Tsvetkov Y (2019) Black is to criminal as caucasian is to police: Detecting and removing multiclass bias in word embeddings. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), Association for Computational Linguistics, Minneapolis, Minnesota, pp 615–621. https://doi.org/10.18653/v1/N19-1062, https://www.aclweb.org/anthology/N19-1062

  124. 124.

    Matuszek C, FitzGerald N, Zettlemoyer L, Bo L, Fox D (2012) A joint model of language and perception for grounded attribute learning. In: Proceedings of the 29th international coference on international conference on machine learning, Omnipress, Madison, WI, USA, ICML’12, pp 1435–1442

  125. 125.

    Matuszek C, Herbst E, Zettlemoyer L, Fox D (2013) Learning to parse natural language commands to a robot control system. Experimental robotics. Springer, Berlin, pp 403–415

    Chapter  Google Scholar 

  126. 126.

    May R, Keyser SJ et al (1985) Logical form: its structure and derivation, vol 12. MIT Press, New York

    Google Scholar 

  127. 127.

    McCoy T, Pavlick E, Linzen T (2019) Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. In: Proceedings of the 57th annual meeting of the association for computational linguistics, association for computational linguistics, Florence, Italy, pp 3428–3448. https://doi.org/10.18653/v1/P19-1334, https://www.aclweb.org/anthology/P19-1334

  128. 128.

    McCready E, Henderson R (2020) Social meaning in repeated interactions. In: Proceedings of the probability and meaning conference (PaM 2020), Association for Computational Linguistics, Gothenburg, pp 69–72. https://www.aclweb.org/anthology/2020.pam-1.9

  129. 129.

    Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41

    Article  Google Scholar 

  130. 130.

    Misra A, Bhuiyan M, Mahmud J, Tripathy S (2019) Using structured representation and data: a hybrid model for negation and sentiment in customer service conversations. In: Proceedings of the tenth workshop on computational approaches to subjectivity, sentiment and social media analysis, Association for Computational Linguistics, Minneapolis, USA, pp 46–56. https://doi.org/10.18653/v1/W19-1306, https://www.aclweb.org/anthology/W19-1306

  131. 131.

    Misra D, Tao K, Liang P, Saxena A (2015) Environment-driven lexicon induction for high-level instructions. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1: long papers), pp 992–1002

  132. 132.

    Monroe W (2018) Learning in the rational speech acts model. PhD thesis, Stanford University. https://wmonroeiv.github.io/pubs/dissertation.pdf

  133. 133.

    Monroe W, Hawkins RX, Goodman ND, Potts C (2017) Colors in context: a pragmatic neural model for grounded language understanding. Trans Assoc Comput Linguist 5:325–338

    Article  Google Scholar 

  134. 134.

    Montague R (1970) Universal grammar. 1974:222–46

  135. 135.

    Morante R, Blanco E (2012) *SEM 2012 shared task: resolving the scope and focus of negation. In: *SEM 2012: the first joint conference on lexical and computational semantics—volume 1: Proceedings of the main conference and the shared task, and Volume 2: proceedings of the sixth international workshop on semantic evaluation (SemEval 2012), Association for Computational Linguistics, Montréal, Canada, pp 265–274. https://www.aclweb.org/anthology/S12-1035

  136. 136.

    Neff M, Kipp M, Albrecht I, Seidel HP (2008) Gesture modeling and animation based on a probabilistic re-creation of speaker style. ACM Trans Graph 27(1):1–24

    Article  Google Scholar 

  137. 137.

    Newman B, Cohn-Gordon R, Potts C (2020) Communication-based evaluation for natural language generation. In: Proceedings of the society for computation in linguistics 2020, Association for Computational Linguistics, New York, pp 116–126. https://www.aclweb.org/anthology/2020.scil-1.16

  138. 138.

    Nie Y, Williams A, Dinan E, Bansal M, Weston J, Kiela D (2020) Adversarial NLI: a new benchmark for natural language understanding. In: Proceedings of the 58th annual meeting of the association for computational linguistics, Association for Computational Linguistics, Online, pp 4885–4901. https://doi.org/10.18653/v1/2020.acl-main.441, https://www.aclweb.org/anthology/2020.acl-main.441

  139. 139.

    Niven T, Kao HY (2019) Probing neural network comprehension of natural language arguments. In: Proceedings of the 57th annual meeting of the association for computational linguistics, Association for Computational Linguistics, Florence, Italy, pp 4658–4664. https://doi.org/10.18653/v1/P19-1459, https://www.aclweb.org/anthology/P19-1459

  140. 140.

    Nivre J, de Marneffe MC, Ginter F, Hajic J, Manning CD, Pyysalo S, Schuster S, Tyers F, Zeman D (2020) Universal dependencies v2: an evergrowing multilingual treebank collection. In: Proceedings of the 12th language resources and evaluation conference, pp 4034–4043

  141. 141.

    Oepen S, Abend O, Abzianidze L, Bos J, Hajič J, Hershcovich D, Li B, O’Gorman T, Xue N, Zeman D (2020) MRP 2020: the second shared task on cross-framework and cross-lingual meaning representation parsing. In: Proceedings of the shared task on cross-framework meaning representation parsing at the 2020 conference on natural language learning, Online, pp 1–22

  142. 142.

    Ortiz CL Jr (2016) Why we need a physically embodied turing test and what it might look like. AI Mag 37(1):55–62

    Google Scholar 

  143. 143.

    Paranjape B, Joshi M, Thickstun J, Hajishirzi H, Zettlemoyer L (2020) An information bottleneck approach for controlling conciseness in rationale extraction. In: Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP), Association for Computational Linguistics, Online, pp 1938–1952. https://doi.org/10.18653/v1/2020.emnlp-main.153, https://www.aclweb.org/anthology/2020.emnlp-main.153

  144. 144.

    Partee BH (2016) Formal semantics. Handbooks in language and linguistics. Cambridge University Press, Cambridge, pp 3–32

    Book  Google Scholar 

  145. 145.

    Pavlick E, Kwiatkowski T (2019) Inherent disagreements in human textual inferences. Trans Assoc Comput Linguist 7:677–694

    Article  Google Scholar 

  146. 146.

    Potts C (2009) Formal pragmatics. The Routledge Encyclopedia of Pragmatics. Routledge, London, pp 167–170

    Google Scholar 

  147. 147.

    Potts C, Lassiter D, Levy R, Frank MC (2016) Embedded implicatures as pragmatic inferences under compositional lexical uncertainty. J Semant 33(4):755–802

    Google Scholar 

  148. 148.

    Prange J, Schneider N (2021) Draw mir a sheep: a supersense-based analysis of German case and adposition semantics. Künstliche Intelligenz. https://doi.org/10.1007/s13218-021-00712-y

    Article  Google Scholar 

  149. 149.

    Pustejovsky J, Krishnaswamy N (2021) Embodied human computer interaction. Künstliche Intelligenz. https://doi.org/10.1007/s13218-021-00727-5

    Article  Google Scholar 

  150. 150.

    Rajani NF, McCann B, Xiong C, Socher R (2019) Explain yourself! leveraging language models for commonsense reasoning. In: Proceedings of the 57th annual meeting of the association for computational linguistics, Association for Computational Linguistics, Florence, Italy, pp 4932–4942. https://doi.org/10.18653/v1/P19-1487, https://www.aclweb.org/anthology/P19-1487

  151. 151.

    Recanati F (2004) Literal meaning. Cambridge University Press, Cambridge

    Google Scholar 

  152. 152.

    Reyle U (1995) On reasoning with ambiguities. Proceedings of the 7th conference of the European chapter of the association for computational linguistics pp 1–8

  153. 153.

    Ribeiro MT, Singh S, Guestrin C (2016) ”Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144

  154. 154.

    Rinott R, Dankin L, Alzate Perez C, Khapra MM, Aharoni E, Slonim N (2015) Show me your evidence—an automatic method for context dependent evidence detection. In: Proceedings of the 2015 conference on empirical methods in natural language processing, Association for Computational Linguistics, Lisbon, Portugal, pp 440–450. https://doi.org/10.18653/v1/D15-1050, https://www.aclweb.org/anthology/D15-1050

  155. 155.

    Roeper TW (2011) The acquisition of recursion: how formalism articulates the child’s path. Biolinguistics 5(1–2):057–086

    Google Scholar 

  156. 156.

    Ruppenhofer J, Ellsworth M, Petruck MRL, Johnson CR, Baker CF, Scheffczyk J (2016) FrameNet II: extended theory and practice. https://framenet.icsi.berkeley.edu/fndrupal/the_book

  157. 157.

    Van der Sandt RA (1992) Presupposition projection as anaphora resolution. J Seman 9(4):333–377

    Article  Google Scholar 

  158. 158.

    Sayeed A, Lindemann M, Demberg V (2019) Verb-second effect on quantifier scope interpretation. In: Proceedings of the workshop on cognitive modeling and computational linguistics, Association for Computational Linguistics, Minneapolis, Minnesota, pp 134–139. https://doi.org/10.18653/v1/W19-2915, https://www.aclweb.org/anthology/W19-2915

  159. 159.

    Scarlini B, Pasini T, Navigli R (2020) With more contexts comes better performance: Contextualized sense embeddings for all-round word sense disambiguation. In: Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP), Association for Computational Linguistics, Online, pp 3528–3539. https://doi.org/10.18653/v1/2020.emnlp-main.285, https://www.aclweb.org/anthology/2020.emnlp-main.285

  160. 160.

    Schiller B, Daxenberger J, Gurevych I (2021) Stance detection benchmark: how robust is your stance detection? Künstliche Intelligenz. https://doi.org/10.1007/s13218-021-00714-w

    Article  Google Scholar 

  161. 161.

    Schneider N, Hwang JD, Srikumar V, Prange J, Blodgett A, Moeller SR, Stern A, Bitan A, Abend O (2018) Comprehensive supersense disambiguation of English prepositions and possessives. In: Proceedings of the 56th annual meeting of the association for computational linguistics (volume 1: long papers), Association for Computational Linguistics, Melbourne, Australia, pp 185–196. https://doi.org/10.18653/v1/P18-1018, https://www.aclweb.org/anthology/P18-1018

  162. 162.

    Schuster S, Manning CD (2016) Enhanced English Universal Dependencies: an improved representation for natural language understanding tasks. In: Proceedings of the tenth international conference on language resources and evaluation (LREC’16), European Language Resources Association (ELRA), Portorož, Slovenia, pp 2371–2378. https://www.aclweb.org/anthology/L16-1376

  163. 163.

    Schwartz R, Dodge J, Smith NA, Etzioni O, Green AI (2020) Commun ACM 63(12):54–63. https://doi.org/10.1145/3381831

    Article  Google Scholar 

  164. 164.

    Searle JR (1978) Literal meaning. Erkenntnis 13(1):207–224

    Article  Google Scholar 

  165. 165.

    Shafto P, Goodman ND, Frank MC (2012) Learning from others: the consequences of psychological reasoning for human learning. Perspect Psychol Sci 7(4):341–351

    Article  Google Scholar 

  166. 166.

    Shapiro L (2019) Embodied cognition. Routledge, London

    Book  Google Scholar 

  167. 167.

    She L, Chai J (2016) Incremental acquisition of verb hypothesis space towards physical world interaction. In: Proceedings of the 54th annual meeting of the association for computational linguistics (volume 1: long papers), pp 108–117

  168. 168.

    She L, Chai J (2017) Interactive learning of grounded verb semantics towards human-robot communication. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: long papers), pp 1634–1644

  169. 169.

    She L, Yang S, Cheng Y, Jia Y, Chai J, Xi N (2014) Back to the blocks world: Learning new actions through situated human-robot dialogue. In: Proceedings of the 15th annual meeting of the special interest group on discourse and dialogue (SIGDIAL), pp 89–97

  170. 170.

    Shwartz V (2021) Learning high precision lexical inferences. Künstliche Intelligenz. https://doi.org/10.1007/s13218-021-00709-7

    Article  Google Scholar 

  171. 171.

    Shwartz V, Goldberg Y, Dagan I (2016) Improving hypernymy detection with an integrated path-based and distributional method. In: Proceedings of the 54th annual meeting of the association for computational linguistics (volume 1: long papers), Association for Computational Linguistics, Berlin, Germany, pp 2389–2398. https://doi.org/10.18653/v1/P16-1226, https://www.aclweb.org/anthology/P16-1226

  172. 172.

    Silberer C, Lapata M (2014) Learning grounded meaning representations with autoencoders. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 1: long papers), pp 721–732

  173. 173.

    ...Slonim N, Bilu Y, Alzate C, Bar-Haim R, Bogin B, Bonin F, Choshen L, Cohen-Karlik E, Dankin L, Edelstein L, Ein-Dor L, Friedman-Melamed R, Gavron A, Gera A, Gleize M, Gretz S, Gutfreund D, Halfon A, Hershcovich D, Hoory R, Hou Y, Hummel S, Jacovi M, Jochim C, Kantor Y, Katz Y, Konopnicki D, Kons Z, Kotlerman L, Krieger D, Lahav D, Lavee T, Levy R, Liberman N, Mass Y, Menczel A, Mirkin S, Moshkowich G, Ofek-Koifman S, Orbach M, Rabinovich E, Rinott R, Shechtman S, Sheinwald D, Shnarch E, Shnayderman I, Soffer A, Spector A, Sznajder B, Toledo A, Toledo-Ronen O, Venezian E, Aharonov R (2021) An autonomous debating system. Nature 591(7850):379–384. https://doi.org/10.1038/s41586-021-03215-w

    Article  Google Scholar 

  174. 174.

    Snyder W (2007) Child language: the parametric approach. Oxford University Press, Oxford

    Google Scholar 

  175. 175.

    Speaks J (2021) Theories of Meaning. In: Zalta EN (ed) The stanford encyclopedia of philosophy, Spring, 2021st edn. Stanford University, Metaphysics Research Lab

  176. 176.

    Stevenson M, Wilks Y (2003) Word sense disambiguation. The Oxford handbook of computational linguistics. Oxford University Press, Oxford, pp 249–265

    Google Scholar 

  177. 177.

    Storks S, Gao Q, Chai JY (2019) Recent advances in natural language inference: a survey of benchmarks, resources, and approaches. arXiv preprint arXiv:190401172

  178. 178.

    Strubell E, Ganesh A, McCallum A (2019) Energy and policy considerations for deep learning in NLP. In: Proceedings of the 57th annual meeting of the association for computational linguistics, association for computational linguistics, Florence, Italy, pp 3645–3650. https://doi.org/10.18653/v1/P19-1355, https://www.aclweb.org/anthology/P19-1355

  179. 179.

    Subramanian S, Bogin B, Gupta N, Wolfson T, Singh S, Berant J, Gardner M (2020) Obtaining faithful interpretations from compositional neural networks. In: Proceedings of the 58th annual meeting of the association for computational linguistics, Association for Computational Linguistics, Online, pp 5594–5608. https://doi.org/10.18653/v1/2020.acl-main.495, https://www.aclweb.org/anthology/2020.acl-main.495

  180. 180.

    Sukthanker R, Poria S, Cambria E, Thirunavukarasu R (2020) Anaphora and coreference resolution: a review. Inf Fusion 59:139–162

    Article  Google Scholar 

  181. 181.

    Taboada M, Mann WC (2006) Applications of rhetorical structure theory. Discourse Stud 8(4):567–588

    Article  Google Scholar 

  182. 182.

    Tahmasebi N, Borin L, Jatowt A (2019) Survey of computational approaches to lexical semantic change. 1811.06278

  183. 183.

    Tamari R, Shani C, Hope T, Petruck MRL, Abend O, Shahaf D (2020) Language (re)modelling: towards embodied language understanding. In: Proceedings of the 58th annual meeting of the association for computational linguistics, association for computational linguistics, Online, pp 6268–6281. https://doi.org/10.18653/v1/2020.acl-main.559, https://www.aclweb.org/anthology/2020.acl-main.559

  184. 184.

    Tellex S, Knepper R, Li A, Rus D, Roy N (2014a) Asking for help using inverse semantics. Robotics. https://doi.org/10.15607/RSS.2014.X.024

    Article  Google Scholar 

  185. 185.

    Tellex S, Thaker P, Joseph J, Roy N (2014b) Learning perceptually grounded word meanings from unaligned parallel data. Mach Learn 94(2):151–167

    MathSciNet  MATH  Article  Google Scholar 

  186. 186.

    Trott S, Torrent TT, Chang N, Schneider N (2020) (re)construing meaning in NLP. In: Proceedings of the 58th annual meeting of the association for computational linguistics, association for computational linguistics, Online, pp 5170–5184. https://doi.org/10.18653/v1/2020.acl-main.462, https://www.aclweb.org/anthology/2020.acl-main.462

  187. 187.

    Van Gysel JEL, Vigus M, Chun J, Lai K, Moeller S, Yao J, O’Gorman T, Cowell A, Croft W, Huang CR, Hajic J, Martin JH, Oepen S, Palmer M, Pustejovsky J, Vallejos R, Xue N (2021) Designing a uniform meaning representation for natural language processing. Künstlich Intell. https://doi.org/10.1007/s13218-021-00722-w

    Article  Google Scholar 

  188. 188.

    Venant A, Asher N (2015) Dynamics of public commitments in dialogue. In: Proceedings of the 11th international conference on computational semantics, association for computational linguistics, London, UK, pp 272–282. https://www.aclweb.org/anthology/W15-0131

  189. 189.

    Venhuizen N, Bos J, Brouwer H (2013) Parsimonious semantic representations with projection pointers. In: Proceedings of the 10th international conference on computational semantics (IWCS 2013)–long papers, pp 252–263

  190. 190.

    Von Fintel K, Heim I (2011) Intensional semantics

  191. 191.

    Wang J, Sun C, Li S, Wang J, Si L, Zhang M, Liu X, Zhou G (2019) Human-like decision making: document-level aspect sentiment classification via hierarchical reinforcement learning. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China, pp 5581–5590. https://doi.org/10.18653/v1/D19-1560, https://www.aclweb.org/anthology/D19-1560

  192. 192.

    Wiegreffe S, Marasović A (2021) Teach me to explain: a review of datasets for explainable NLP. 2102.12060

  193. 193.

    Williams A, Nangia N, Bowman S (2018) A broad-coverage challenge corpus for sentence understanding through inference. In: Proceedings of the 2018 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long papers), Association for Computational Linguistics, New Orleans, Louisiana, pp 1112–1122. https://doi.org/10.18653/v1/N18-1101, https://www.aclweb.org/anthology/N18-1101

  194. 194.

    Yamada A (2021) The syntax, semantics, and pragmatics of Japanese addressee-honorific markers. Künstlich Intell. https://doi.org/10.1007/s13218-021-00717-7

    Article  Google Scholar 

  195. 195.

    Yang B, Cardie C, Frazier P (2015) A hierarchical distance-dependent Bayesian model for event coreference resolution. Trans Assoc Comput Linguist. https://doi.org/10.1162/tacl_a_00155

    Article  Google Scholar 

  196. 196.

    Yin P, Neubig G (2018) TRANX: A transition-based neural abstract syntax parser for semantic parsing and code generation. In: Proceedings of the 2018 conference on empirical methods in natural language processing: system demonstrations, Association for Computational Linguistics, Brussels, Belgium, pp 7–12. https://doi.org/10.18653/v1/D18-2002, https://www.aclweb.org/anthology/D18-2002

  197. 197.

    Yoon EJ, Tessler MH, Goodman ND, Frank MC (2020) Polite speech emerges from competing social goals. Open Mind 4:71–87

    Article  Google Scholar 

  198. 198.

    Žabokrtský Z, Zeman D, Ševčíková M (2020) Sentence meaning representations across languages: what can we learn from existing frameworks? Comput Linguist 46(3):605–665

    Article  Google Scholar 

  199. 199.

    Zaenen A, Karttunen L (2013) Veridicity annotation in the lexicon? A look at factive adjectives. In: Proceedings of the 9th joint ISO-ACL SIGSEM workshop on interoperable semantic annotation, pp 51–58

  200. 200.

    Zhou W, Hu J, Zhang H, Liang X, Sun M, Xiong C, Tang J (2020) Towards interpretable natural language understanding with explanations as latent variables. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H (eds) Advances in neural information processing systems, Curran Associates, Inc., vol 33, pp 6803–6814. https://proceedings.neurips.cc/paper/2020/file/4be2c8f27b8a420492f2d44463933eb6-Paper.pdf

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Hershcovich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hershcovich, D., Donatelli, L. It’s the Meaning That Counts: The State of the Art in NLP and Semantics. Künstl Intell (2021). https://doi.org/10.1007/s13218-021-00726-6

Download citation