Shakey Ever After? Questioning Tacit Assumptions in Robotics and Artificial Intelligence

Abstract

Shakey the robot was a milestone of autonomous robots and artificial intelligence. Its design principles have dominated research until now. Tacit philosophical and architectural assumptions have impoverished the space of research topics and methods. I point out ways to overcome this impasse with sideglances to other scientific fields.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    It is also questionable whether such optimization of known technology is beneficial for industries. Brooks (https://rodneybrooks.com/the-end-of-moores-law/) criticizes the circuit industry for not thinking about new concepts of computer architectures.

References

  1. 1.

    Brooks R (1991) Intelligence without representation. Artif Intell 47:139–159

    Article  Google Scholar 

  2. 2.

    Engelmore R, Morgan T (eds) (1988) Blackboard systems. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  3. 3.

    Gharajedaghi J (2011) Systems thinking: managing chaos and complexity, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  4. 4.

    Gigerenzer G, Brighton H (2009) Homo heuristicus: why biased minds make better inferences. Top Cogn Sci 1:107–143. https://doi.org/10.1111/j.1756-8765.2008.01006.x

    Article  Google Scholar 

  5. 5.

    Gigerenzer G, Todd PM (1999) The ABC Research Group (eds) Simple heuristics that make us smart. Oxford University Press

  6. 6.

    Haber A, Sammut C (2013) A cognitive architecture for autonomous robots. Adv Cogn Syst 2:257–275

    Google Scholar 

  7. 7.

    Hayes-Roth B (1985) A blackboard architecture for control. Artif Intell 26(3):251–321. https://doi.org/10.1016/0004-3702(85)90063-3

    Article  Google Scholar 

  8. 8.

    Hayes-Roth B, Hayes-Roth F (1979) A cognitive model of planning. Cogn Sci 3(4):275–310

    Article  Google Scholar 

  9. 9.

    Katsikopoulos K (2019) Kirsch’s, and everyone’s, bind: how to build models for the wild? Cogn Process 20(2):269–272. https://doi.org/10.1007/s10339-019-00914-1

    Article  Google Scholar 

  10. 10.

    Kelley D, Kelley T (2013) Creative confidence. Harpercollins, New York

    Google Scholar 

  11. 11.

    Kirsch A (2017) Lessons from human problem solving for cognitive systems research. Adv Cogn Syst 5:13–24. http://www.cogsys.org/papers/ACSvol5/paper-5-4.pdf

  12. 12.

    Kirsch A (2017) A modular approach of decision-making in the context of robot navigation in domestic environments. In: Benzmüller C, Lisetti C, Theobald M (eds) 3rd global conference on artificial intelligence (GCAI), vol 50. EasyChair, Miami, FL, pp 134–147

    Google Scholar 

  13. 13.

    Klein G (2002) The fiction of optimization. In: Gigerenzer G, Selten R (eds) Bounded rationality: the adaptive toolbox. MIT Press, Cambridge, pp 103–122

    Google Scholar 

  14. 14.

    Klein G (2017) Sources of power: how people make decisions. MIT Press, Cambridge

    Google Scholar 

  15. 15.

    Kotseruba I, Tsotsos JK (2016) A review of 40 years of cognitive architecture research: core cognitive abilities and practical applications. arXiv:1610.08602

  16. 16.

    Lakoff G (1987) Women, fire, and dangerous things: what categories reveal about the mind. The University of Chicago Press, Chicago

    Google Scholar 

  17. 17.

    Lakoff G, Johnson M (1980) METAPHORS we live by. The University of Chicago Press, Chicago

    Google Scholar 

  18. 18.

    Langley P (2017) Progress and challenges in research on cognitive architectures. In: Proceedings of the thirty-first AAAI conference on artificial intelligence (AAAI-17)

  19. 19.

    Lesser VR, Erman LD (1977) A retrospective view of the hearsay-II architecture. In: IJCAI’77: Proceedings of the 5th international joint conference on artificial intelligence

  20. 20.

    Maes P (1990) Situated agents can have goals. Robot Auton Syst 6:49–70

    Article  Google Scholar 

  21. 21.

    Matarić M (1998) Behavior-based robotics as a tool for synthesis of artificial behavior and analysis of natural behavior. Trends Cogn Sci 2(3):82–87

    Article  Google Scholar 

  22. 22.

    Müller A, Wünsche HJ (2012) Object-related-navigation for mobile robots. In: Proceedings of IEEE intelligent vehicles symposium. IEEE, Madrid

    Google Scholar 

  23. 23.

    Nilsson NJ (1984) Shakey the robot. Tech. Rep. 323, AI Center, SRI International. http://www.ai.sri.com/shakey/

  24. 24.

    Scheutz M, Harris J, Schermerhorn P (2013) Systematic integration of cognitive and robotic architectures. Adv Cogn Syst 2:277–296

    Google Scholar 

  25. 25.

    Simon HA (1972) Theories of bounded rationality. In: McGuire C, Radner R (eds) Decision and organization. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  26. 26.

    Veloso M, Carbonell J, Pérez A, Borrajo D, Fink E, Blythe J (1995) Integrating planning and learning: the prodigy architecture. J Exp Theor Artif Intell 7(1):81–120

    Article  Google Scholar 

  27. 27.

    Yves Pigneur AO, Bernada G, Smith A (2014) Value proposition design. Wiley, New York

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandra Kirsch.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirsch, A. Shakey Ever After? Questioning Tacit Assumptions in Robotics and Artificial Intelligence. Künstl Intell 33, 423–428 (2019). https://doi.org/10.1007/s13218-019-00626-w

Download citation

Keywords

  • Shakey
  • Architectures
  • Design
  • Objectivism