Societal Implications of Big Data

Abstract

Modern societies have developed a variety of technologies and techniques to identify, measure and influence people and objects. Smart devices such as smartphones and wearables assist and track their users in every aspect of life. Large amounts of data are collected, evaluated and interconnected to analyse the behaviour of individuals, social groups and collectives. By discussing recent practices of self-tracking as well of real-time control of complex systems, we will show that real-time analysis and feedback loops increasingly foster a society of (self-)control. Data scientists and social scientists should work together to develop the concepts of regulation, which are needed to cope with the challenges and risks of big data.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    http://www.abida.de.

  2. 2.

    See, e.g., http://tylervigen.com/spurious-correlations.

  3. 3.

    http://quantifiedself.com/.

References

  1. 1.

    McLuhan M (1962) The Gutenberg galaxy. University of Toronto Press, Toronto

    Google Scholar 

  2. 2.

    Umesao T (1963) Information industry theory: dawn of the coming era of the ectodermal industry. Hoso Asahi 1/1961:4–17

    Google Scholar 

  3. 3.

    Miller AR (1967) The assault on privacy. University of Michigan Press, Ann Arbor

    Google Scholar 

  4. 4.

    Toffler A (1970) Future shock. Bantam Books, New York

    Google Scholar 

  5. 5.

    Becker HB (1986) Can users really absorb data at today’s rates? Tomorrow’s? Data Commun 15(8):177–193

    Google Scholar 

  6. 6.

    Seyfert R, Roberge J (eds) (2017) Algorithmic cultures: essays on meaning, performance and new technologies. Routledge, London/New York

    Google Scholar 

  7. 7.

    Kosinski M, Stillwell D, Graepel T (2013) Private traits and attributes are predictable from digital records of human behavior. Proc Natl Acad Sci 110(15):5802–5805

    Article  Google Scholar 

  8. 8.

    Dolata D, Schrape JF (2016) Masses, crowds, communities, movements: collective action in the internet age. Soc Mov Stud 15(1):1–18

    Article  Google Scholar 

  9. 9.

    McFarland DA, Lewis K, Goldberg A (2016) Sociology in the era of Big Data: the ascent of forensic social science. Am Sociol 47(1):12–35

    Article  Google Scholar 

  10. 10.

    Anderson C (2008) The end of theory: the data deluge makes the scientific method obsolete. Wired 16(7). https://www.wired.com/2008/06/pb-theory/. Accessed 10 Dec 2017

  11. 11.

    Lupton D (2016) The quantified self. Polity Press, Cambridge and Malden

    Google Scholar 

  12. 12.

    Ruckenstein M, Pantzar M (2017) Beyond the quantified self: thematic exploration of a dataistic paradigm. New Media Society 19(3):401–418

    Article  Google Scholar 

  13. 13.

    Didžiokaitė G, Saukko P, Greiffenhagen C (2017) The mundane experience of everyday calorie trackers: beyond the metaphor of quantified self. New Media Soc. https://doi.org/10.1177/1461444817698478

    Google Scholar 

  14. 14.

    Selke S (2016) Rationale Diskriminierung durch Lifelogging—Die Optimierung des Individuums auf Kosten des Solidargefüges? In: Andelfinger VP, Hänisch T (eds) Die Optimierung des Individuums—wie weit wollen, sollen, dürfen wir gehen? Springer, Berlin, pp 53–71

    Google Scholar 

  15. 15.

    Selke S (2014) Lifelogging: Wie die digitale Selbstvermessung unsere Gesellschaft verändert. Ullstein eBooks

  16. 16.

    Gerlek S, Kappler KE, Noji E (2017) Digitale Medien in leiblichen Praktiken. In Rebane G (ed) Identität und kulturelle Praktiken im digitalen Zeitalter. Könighausen & Neumann, Würzburg

    Google Scholar 

  17. 17.

    Vormbusch U (2016) Taxonomien des Selbst. Zur Hervorbringung subjektbezogener Bewertungsordnungen im Kontext ökonomischer und kultureller Unsicherheit. In: Duttweiler S, Gugutzer R, Passoth JH, Strübing J (eds) Leben nach Zahlen. Self-Tracking als Optimierungsprojekt? Transcript, Bielefeld, pp 45–62

    Google Scholar 

  18. 18.

    Weyer J (2014) Einleitung: Netzwerke in der mobilen Echtzeitgesellschaft. In: Weyer J (ed) Soziale Netzwerke. Konzepte und Methoden der sozialwissenschaftlichen Netzwerkforschung, 3rd edn. Oldenbourg, München, pp 3–37

    Google Scholar 

  19. 19.

    Rochlin GI (1997) Trapped in the net. The unanticipated consequences of computerization. Princeton, Princeton UP

    Google Scholar 

  20. 20.

    Lessig L (2006) Code: version 2.0. Bacis Books, New York

    Google Scholar 

  21. 21.

    Saurwein F, Just N, Latzer M (2015) Governance of algorithms: options and limitations. Info 17(6):35–49. https://doi.org/10.1108/info-05-2015-0025

    Article  Google Scholar 

  22. 22.

    Ohm P (2014) Changing the rules: general principles for data use and analysis. In: Lane J, Stodden V, Bender S, Nissenbaum H (eds) Privacy, big data, and the public good. Cambridge University Press, New York, pp 96–111

    Google Scholar 

  23. 23.

    Barocas S, Nissenbaum H (2014) Big Data’s end run around anonymity and consent. In: Lane J, Stodden V, Bender S, Nissenbaum H (eds) Privacy, Big Data, and the public good. Cambridge University Press, Cambridge, pp 44–75

    Google Scholar 

  24. 24.

    Ulbricht L, Haunss S, Hofmann J, Klinger U, Passoth JH, Pentzold C, Schneider I, Strassheim H, Voß JP (2018) Dimensionen von Big Data: eine politikwissenschaftliche Systematisierung”. In: Heil R, Kolany­Raiser B, Orwat C (eds) Big Data und Gesellschaft. Eine multidisziplinäre Annäherung. Springer, Wiesbaden (forthcoming)

    Google Scholar 

  25. 25.

    Ulbricht L (2017) Machtkämpfe um Big Data: Bürger und Konsumenten müssen geschützt werden. WZB-Mitteilungen 155:18–21

    Google Scholar 

  26. 26.

    Foster JB, McChesney RW (2011) The internet’s unholy marriage to capitalism. Mon Rev 62(10):1–30

    Article  Google Scholar 

  27. 27.

    Roßnagel A, Geminn C, Jandt S, Richter P (2016) Datenschutzrecht 2016 “Smart” genug für die Zukunft?: Ubiquitous computing und Big Data als Herausforderungen des Datenschutzrechts. http://www.uni-kassel.de/upress/online/OpenAccess/978-3-7376-0154-2.OpenAccess.pdf. Accessed 10 Dec 2017

  28. 28.

    Lewandowski D (2014) Why we need an independent index of the web. In: König R, Rasch M (eds) Inc Reader: vol 9. Society of the query reader. Reflections on web search. Inst. of Network Cultures, Amsterdam, pp 49–58

    Google Scholar 

  29. 29.

    Hull G (2015) Successful failure: what Foucault can teach us about privacy self-management in a world of Facebook and big data. Ethics Inf Technol 17(2):89–101. https://doi.org/10.1007/s10676-015-9363-z

    MathSciNet  Article  Google Scholar 

  30. 30.

    Dijck J (2016) #AoIR2016: opening keynote “The Platform Society” by José van Dijck. https://www.youtube.com/watch?v=-ypiiSQTNqo. Accessed 10 Dec 2017

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johannes Weyer.

Additional information

Special Issue “Big Data”, edited by Ullrich Meyer and Kristian Kersting.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kappler, K., Schrape, J., Ulbricht, L. et al. Societal Implications of Big Data. Künstl Intell 32, 55–60 (2018). https://doi.org/10.1007/s13218-017-0520-x

Download citation

Keywords

  • Smart Devices
  • Privacy Impact Assessment
  • Independent Data Protection Authorities
  • Specific Data-generating Process
  • Corporate Self-regulation