Abstract
Modern societies have developed a variety of technologies and techniques to identify, measure and influence people and objects. Smart devices such as smartphones and wearables assist and track their users in every aspect of life. Large amounts of data are collected, evaluated and interconnected to analyse the behaviour of individuals, social groups and collectives. By discussing recent practices of self-tracking as well of real-time control of complex systems, we will show that real-time analysis and feedback loops increasingly foster a society of (self-)control. Data scientists and social scientists should work together to develop the concepts of regulation, which are needed to cope with the challenges and risks of big data.
This is a preview of subscription content, access via your institution.
Notes
- 1.
- 2.
See, e.g., http://tylervigen.com/spurious-correlations.
- 3.
References
- 1.
McLuhan M (1962) The Gutenberg galaxy. University of Toronto Press, Toronto
- 2.
Umesao T (1963) Information industry theory: dawn of the coming era of the ectodermal industry. Hoso Asahi 1/1961:4–17
- 3.
Miller AR (1967) The assault on privacy. University of Michigan Press, Ann Arbor
- 4.
Toffler A (1970) Future shock. Bantam Books, New York
- 5.
Becker HB (1986) Can users really absorb data at today’s rates? Tomorrow’s? Data Commun 15(8):177–193
- 6.
Seyfert R, Roberge J (eds) (2017) Algorithmic cultures: essays on meaning, performance and new technologies. Routledge, London/New York
- 7.
Kosinski M, Stillwell D, Graepel T (2013) Private traits and attributes are predictable from digital records of human behavior. Proc Natl Acad Sci 110(15):5802–5805
- 8.
Dolata D, Schrape JF (2016) Masses, crowds, communities, movements: collective action in the internet age. Soc Mov Stud 15(1):1–18
- 9.
McFarland DA, Lewis K, Goldberg A (2016) Sociology in the era of Big Data: the ascent of forensic social science. Am Sociol 47(1):12–35
- 10.
Anderson C (2008) The end of theory: the data deluge makes the scientific method obsolete. Wired 16(7). https://www.wired.com/2008/06/pb-theory/. Accessed 10 Dec 2017
- 11.
Lupton D (2016) The quantified self. Polity Press, Cambridge and Malden
- 12.
Ruckenstein M, Pantzar M (2017) Beyond the quantified self: thematic exploration of a dataistic paradigm. New Media Society 19(3):401–418
- 13.
Didžiokaitė G, Saukko P, Greiffenhagen C (2017) The mundane experience of everyday calorie trackers: beyond the metaphor of quantified self. New Media Soc. https://doi.org/10.1177/1461444817698478
- 14.
Selke S (2016) Rationale Diskriminierung durch Lifelogging—Die Optimierung des Individuums auf Kosten des Solidargefüges? In: Andelfinger VP, Hänisch T (eds) Die Optimierung des Individuums—wie weit wollen, sollen, dürfen wir gehen? Springer, Berlin, pp 53–71
- 15.
Selke S (2014) Lifelogging: Wie die digitale Selbstvermessung unsere Gesellschaft verändert. Ullstein eBooks
- 16.
Gerlek S, Kappler KE, Noji E (2017) Digitale Medien in leiblichen Praktiken. In Rebane G (ed) Identität und kulturelle Praktiken im digitalen Zeitalter. Könighausen & Neumann, Würzburg
- 17.
Vormbusch U (2016) Taxonomien des Selbst. Zur Hervorbringung subjektbezogener Bewertungsordnungen im Kontext ökonomischer und kultureller Unsicherheit. In: Duttweiler S, Gugutzer R, Passoth JH, Strübing J (eds) Leben nach Zahlen. Self-Tracking als Optimierungsprojekt? Transcript, Bielefeld, pp 45–62
- 18.
Weyer J (2014) Einleitung: Netzwerke in der mobilen Echtzeitgesellschaft. In: Weyer J (ed) Soziale Netzwerke. Konzepte und Methoden der sozialwissenschaftlichen Netzwerkforschung, 3rd edn. Oldenbourg, München, pp 3–37
- 19.
Rochlin GI (1997) Trapped in the net. The unanticipated consequences of computerization. Princeton, Princeton UP
- 20.
Lessig L (2006) Code: version 2.0. Bacis Books, New York
- 21.
Saurwein F, Just N, Latzer M (2015) Governance of algorithms: options and limitations. Info 17(6):35–49. https://doi.org/10.1108/info-05-2015-0025
- 22.
Ohm P (2014) Changing the rules: general principles for data use and analysis. In: Lane J, Stodden V, Bender S, Nissenbaum H (eds) Privacy, big data, and the public good. Cambridge University Press, New York, pp 96–111
- 23.
Barocas S, Nissenbaum H (2014) Big Data’s end run around anonymity and consent. In: Lane J, Stodden V, Bender S, Nissenbaum H (eds) Privacy, Big Data, and the public good. Cambridge University Press, Cambridge, pp 44–75
- 24.
Ulbricht L, Haunss S, Hofmann J, Klinger U, Passoth JH, Pentzold C, Schneider I, Strassheim H, Voß JP (2018) Dimensionen von Big Data: eine politikwissenschaftliche Systematisierung”. In: Heil R, KolanyRaiser B, Orwat C (eds) Big Data und Gesellschaft. Eine multidisziplinäre Annäherung. Springer, Wiesbaden (forthcoming)
- 25.
Ulbricht L (2017) Machtkämpfe um Big Data: Bürger und Konsumenten müssen geschützt werden. WZB-Mitteilungen 155:18–21
- 26.
Foster JB, McChesney RW (2011) The internet’s unholy marriage to capitalism. Mon Rev 62(10):1–30
- 27.
Roßnagel A, Geminn C, Jandt S, Richter P (2016) Datenschutzrecht 2016 “Smart” genug für die Zukunft?: Ubiquitous computing und Big Data als Herausforderungen des Datenschutzrechts. http://www.uni-kassel.de/upress/online/OpenAccess/978-3-7376-0154-2.OpenAccess.pdf. Accessed 10 Dec 2017
- 28.
Lewandowski D (2014) Why we need an independent index of the web. In: König R, Rasch M (eds) Inc Reader: vol 9. Society of the query reader. Reflections on web search. Inst. of Network Cultures, Amsterdam, pp 49–58
- 29.
Hull G (2015) Successful failure: what Foucault can teach us about privacy self-management in a world of Facebook and big data. Ethics Inf Technol 17(2):89–101. https://doi.org/10.1007/s10676-015-9363-z
- 30.
Dijck J (2016) #AoIR2016: opening keynote “The Platform Society” by José van Dijck. https://www.youtube.com/watch?v=-ypiiSQTNqo. Accessed 10 Dec 2017
Author information
Affiliations
Corresponding author
Additional information
Special Issue “Big Data”, edited by Ullrich Meyer and Kristian Kersting.
Rights and permissions
About this article
Cite this article
Kappler, K., Schrape, JF., Ulbricht, L. et al. Societal Implications of Big Data. Künstl Intell 32, 55–60 (2018). https://doi.org/10.1007/s13218-017-0520-x
Received:
Accepted:
Published:
Issue Date:
Keywords
- Smart Devices
- Privacy Impact Assessment
- Independent Data Protection Authorities
- Specific Data-generating Process
- Corporate Self-regulation