Advertisement

KI - Künstliche Intelligenz

, Volume 31, Issue 3, pp 239–248 | Cite as

Indoor Localisation with Beacons for a User-Friendly Mobile Tour Guide

  • Tobias Kaulich
  • Thomas Heine
  • Alexandra Kirsch
Technical Contribution

Abstract

Bluetooth beacons are a recent technology that promises a simple, low-cost indoor localisation method with mobile devices. One application for such a localisation are museums or other exhibitions to provide visitors with information about nearby exhibits. We tested the localisation capabilities of beacons and explored different localisation techniques. Then we used the localisation in a tour guide app and examined how localisation contributes to the usability of the app.

References

  1. 1.
    Understanding beacon distancing. http://stackoverflow.com/questions/20416218/understanding-ibeacon-distancing. Accessed 14 Oct 2016
  2. 2.
    Ahmetovic D, Gleason C, Ruan C, Kitani K, Takagi H, Asakawa C (2016) Navcog: a navigational cognitive assistant for the blind. In: Proceedings of the 18th international conference on human–computer interaction with mobile devices and services. MobileHCI ’16, pp 90–99, New York, NY, USA, ACMGoogle Scholar
  3. 3.
    Aoki PM, Woodruff A (2000) Improving electronic guidebook interfaces using a task-oriented design approach. In: Proceedings of the 3rd conference on designing interactive systems: processes, practices, methods, and techniques, DIS ’00. NY, USA, ACM, New York, pp 319–325Google Scholar
  4. 4.
    Brooke J (1996) SUS: a “quick and dirty” usability scale. Taylor and Francis, LondonGoogle Scholar
  5. 5.
    Dahlgren E, Mahmood H (2014) Evaluation of indoor positioning based on bluetooth smart technology, June 2014Google Scholar
  6. 6.
    Doucet A, Godsill S, Andrieu C (2000) On sequential monte carlo sampling methods for bayesian filtering. Stat Comput 10(3):197–208CrossRefGoogle Scholar
  7. 7.
    Golestanian M, Poellabauer C (2016) Indoor localization using multi-range beaconing: poster. In: Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing, MobiHoc ’16. NY, USA, ACM, New York, pp 397–398Google Scholar
  8. 8.
    Hocking C (2014) The beacon experiments: low-energy bluetooth devices in action. https://shinesolutions.com/2014/02/17/the-beacon-experiments-low-energy-bluetooth-devices-in-action/. Accessed 14 Oct 2016
  9. 9.
    Kramer R, Modsching M, ten Hagen K (2006) Field study on methods for elicitation of preferences using a mobile digital assistant for a dynamic tour guide. In: Proceedings of the 2006 ACM symposium on applied computing, SAC ’06. NY, USA, ACM, New York, pp 997–1001Google Scholar
  10. 10.
    Krevl A, Ciglarič M (2006) A framework for developing distributed location based applications. In: Proceedings of the 20th international conference on parallel and distributed processing, IPDPS’06, pp 263–263, Washington, DC, USA, 2006. IEEE Computer SocietyGoogle Scholar
  11. 11.
    Lazik P, Rajagopal N, Shih O, Sinopoli B, Rowe A (2015) Alps: a bluetooth and ultrasound platform for mapping and localization. In: Proceedings of the 13th ACM conference on embedded networked sensor systems, SenSys ’15. NY, USA, ACM, New York, pp 73–84Google Scholar
  12. 12.
    Lohmann K (2013) System usability scale (SUS)—an improved german translation of the questionnaire—minds. http://minds.coremedia.com/2013/09/18/sus-scale-an-improved-german-translation-questionnaire/ September 2013
  13. 13.
    Müller C (2014) Praxisbasiertes Technologiedesign für die alternde Gesellschaft: Zwischen gesellschaftlichen Leitbildern und ihrer Operationalisierung im Design. Schriften zu Kooperations- und Mediensystemen, Bd. 35. Josef Eul Verlag GmbH, 2014Google Scholar
  14. 14.
    Richards D (2012) Agent-based museum and tour guides: Applying the state of the art. In: Proceedings of The 8th Australasian conference on interactive entertainment: playing the system, IE ’12, pp 15:1–15:9, New York, NY, USA, ACMGoogle Scholar
  15. 15.
    Corbacho Salas A (2014) Indoor positioning system based on bluetooth low energy, June 2014. Master’s thesisGoogle Scholar
  16. 16.
    Shiomi M, Kanda T, Ishiguro H, Hagita N (2010) A larger audience, please!: Encouraging people to listen to a guide robot. In: Proceedings of the 5th ACM/IEEE international conference on human-robot interaction, HRI ’10. Piscataway, NJ, USA, IEEE Press, pp 31–38Google Scholar
  17. 17.
    Tullis T, Albert B (2008) Measuring the user experience. Morgan Kaufmann Publishers, BurlingtonGoogle Scholar
  18. 18.
    van der Bie J, Visser B, Matsari J, Singh M, van Hasselt T, Koopman J, Kröse B (2016) Guiding the visually impaired through the environment with beacons. In: Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing: adjunct, UbiComp ’16. NY, USA, ACM, New York, pp 385–388Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Tobias Kaulich
    • 1
  • Thomas Heine
    • 2
  • Alexandra Kirsch
    • 1
  1. 1.Department of InformaticsUniversität TübingenTübingenGermany
  2. 2.Institute of Physical ChemistryUniversität TübingenTübingenGermany

Personalised recommendations