KI - Künstliche Intelligenz

, Volume 31, Issue 1, pp 63–71 | Cite as

Reasoning about Imprecise Beliefs in Multi-Agent Systems with PDT Logic

  • Karsten Martiny
  • Ralf Möller
Technical Contribution


We present Probabilistic Doxastic Temporal (PDT) Logic, a formalism to represent and reason about probabilistic beliefs and their finite temporal evolution in multi-agent systems. This formalism enables the quantification of agents’ beliefs through probability intervals and incorporates an explicit notion of time. In this work, we give an overview of recent contributions on PDT Logic. After describing the syntax and semantics of this formalism, we show that two alternative representation forms are available to model problems in PDT Logic. Furthermore, we outline how abductive reasoning can be performed in PDT Logic and how this formalism can be extended to infinite time frames.


Knowledge representation Belief updates Imprecise probabilities 


  1. 1.
    Aumann RJ (1976) Agreeing to disagree. Ann Stat 4(6):1236–1239MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baltag A, Moss LS (2004) Logics for epistemic programs. Synthese 139(2):165–224MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baltag A, Moss LS, Solecki S (1998) The logic of public announcements, common knowledge, and private suspicions. In: Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge. TARK ’98Morgan Kaufmann Publishers Inc., San Francisco, CA pp 43–56Google Scholar
  4. 4.
    van Benthem J (2003) Conditional probability meets update logic. J Logic Lang Inform 12(4):409–421. doi: 10.1023/A:1025002917675 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    van Ditmarsch H, van der Hoek W, Kooi B (2007) Dynamic Epistemic Logic, 1st edn. Springer, New YorkGoogle Scholar
  6. 6.
    Fagin R, Halpern JY (1994) Reasoning about knowledge and probability. J ACM 41:340–367MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fagin R, Halpern JY, Moses Y, Vardi MY (1995) Reasoning about knowledge. MIT Press, Cambridge (1995)Google Scholar
  8. 8.
    Gardner M (1961) The Second Scientific American Book of mathematical puzzles and diversions. Simon and Schuster, New YorkGoogle Scholar
  9. 9.
    Grünwald PD, Halpern JY (2003) Updating probabilities. J Artif Int Res 19(1):243–278MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hintikka J (1962) Knowledge and belief. An introduction to the logic of the two notions. Cornell University Press, Ithaca, NYGoogle Scholar
  11. 11.
    Kooi BP (2003) Probabilistic dynamic epistemic logic. J Logic Lang Inform 12(4):381–408. doi: 10.1023/A:1025050800836 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kripke SA (1963) Semantical considerations on modal logic. Acta Philos Fenn 16(1963):83–94MathSciNetzbMATHGoogle Scholar
  13. 13.
    Martiny K, Moeller R (2014) PDT Logic for Stream Reasoning in Multi-agent Systems. In: SCSS 2014. 6th International Symposium on Symbolic Computation in Software Science. EPiC Series, vol 30. EasyChair, pp 35–46Google Scholar
  14. 14.
    Martiny K, Möller R (2015) A probabilistic doxastic temporal logic for reasoning about beliefs in multi-agent systems. In: ICAART 2015—Proceedings of the 7th International Conference on Agents and Artificial Intelligence. SciTePress, PortugalGoogle Scholar
  15. 15.
    Martiny K, Möller R (2015) Abduction in PDT Logic. In: AI 2015: advances in artificial intelligence. Springer International Publishing, New YorkGoogle Scholar
  16. 16.
    Martiny K, Möller R (2015) PDT logic: a probabilistic doxastic temporal logic for reasoning about beliefs in multi-agent systems. J Artif Int Res 57(1):39–112MathSciNetzbMATHGoogle Scholar
  17. 17.
    Martiny K, Motzek A, Möller R (2015) Formalizing agents beliefs for cyber-security defense strategy planning. In: CISIS 2015—Proceedings of the 8th International Conference on Computational Intelligence in Security for Information SystemsGoogle Scholar
  18. 18.
    Parikh R, Ramanujam R (2003) A knowledge based semantics of messages. J Logic Lang Inform 12(4):453–467. doi: 10.1023/A:1025007018583 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Plaza J (1989) Logics of public communications. In: Proceedings of the 4th international symposium on methodologies for intelligent systems: Poster session program. Oak Ridge National Laboratory, USA, pp 201–216Google Scholar
  20. 20.
    Shakarian P, Parker A, Simari G, Subrahmanian VS (2011) Annotated probabilistic temporal logic. ACM Trans Comput Logic 12(2):14:1–14:44MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Information SystemsUniversität zu LübeckLübeckGermany

Personalised recommendations