Knowledge-Based Instrumentation and Control for Competitive Industry-Inspired Robotic Domains


Autonomy is an increasing trend in manufacturing industries. Several industry-inspired robotic competitions have been established in recent years to provide testbeds of comprehensible size. In this paper, we describe a knowledge-based instrumentation and control framework used in several of these competitions. It is implemented using a rule-based production system and creates the task goals for autonomous mobile robots. It controls the environment’s agency using sensor data from processing stations and instructs proper reactions. The monitoring and collection of various data allows for an effective instrumentation of the competitions for evaluation purposes. The goal is to achieve automated runs with no or as little human intervention as possible which would allow for more and longer lasting runs. It provides a general framework adaptable to suit many scenarios and is an interesting test case for knowledge-based systems in an industry-inspired setting.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

  2. 2.

  3. 3.

    RoCKIn and RockEU2 also have domestic service robot branches, which are not further detailed for the sake of brevity.

  4. 4.

  5. 5.

  6. 6.

  7. 7.

  8. 8.

    Technical Challenges in RoboCup are tasks in addition to the main task used to foster development of new capabilities in a league.

  9. 9.

  10. 10.

  11. 11.

  12. 12.

    The source of the RoboCup Industrial Referee Box is available at


  1. 1.

    Amigoni F, Bastianelli E, Berghofer J, Bonarini A, Fontana G, Hochgeschwender N, Iocchi L, Kraetzschmar G, Lima P, Matteucci M, Miraldo P, Nardi D, Schiaffonati V (2015) Competitions for benchmarking: task and functionality scoring complete performance assessment. IEEE Robot Autom Mag 22:53–61

    Article  Google Scholar 

  2. 2.

    Amigoni F, Bonarini A, Fontana G., Matteucci M, Schiaffonati V.: Benchmarking through competitions. In: European robotics forum—workshop on robot competitions: benchmarking, technology transfer, and education (2013)

  3. 3.

    Barbosa M, Bernardino A, Figueira D, Gaspar J, Goncalves N, Lima P, Moreno P, Pahliani, A, Santos-Victor J, Spaan M, Sequeira J.: Isrobotnet: a testbed for sensor and robot network systems. In: IEEE/RSJ international conference on intelligent robots and systems (IROS) (2009)

  4. 4.

    Brachman RJ, Levesque HJ.: Knowledge representation and reasoning. Elsevier, San Francisco (2004)

  5. 5.

    Bray T (2014) The JavaScript Object Notation (JSON) Data Interchange Format. RFC 7159, Internet Engineering Task Force

  6. 6.

    Calli B, Walsman A, Singh A, Srinivasa S, Abbeel P, Dollar AM (2015) Benchmarking in manipulation research. IEEE Robot Autom Mag 22:36–51

    Article  Google Scholar 

  7. 7.

    Dwiputra R, Berghofer J, Ahmad A, Awaad I, Amigoni F, Bischoff R, Bonarini A, Fontana G, Hegger F, Hochgeschwender N, Locchi L, Kraetzschmar G, Lima PU, Matteucci M, Nardi D, Schiaffonati V, Schneider S (2014) The RoCKIn@Work Challenge. In: 45th international symposium on robotics (ISR)

  8. 8.

    Fontana G., Matteucci M, Sorrenti DG Rawseeds: building a benchmarking toolkit for autonomous robotics. In: Amigoni F, Schiaffonati V (eds) Methods and experimental techniques in computer engineering, SpringerBriefs in applied sciences and technology. Springer International Publishing, pp 55–68 (2014)

  9. 9.

    Forgy CL (1982) Rete: a fast algorithm for the many pattern/many object pattern match problem. Artif Intell 19(1)

  10. 10.

    Giarratano JC (2007) CLIPS reference manuals.

  11. 11.

    International Electrotechnical Commission (2013) Enterprise-control system integration—Part 1: models and terminology

  12. 12.

    International Electrotechnical Commission (2015) International Organization for Standardization: ISO/IEC DIS 20922: Information technology—message queuing telemetry transport (MQTT) v3.1.1

  13. 13.

    Kagermann H, Wahlster W, Helbig J (2013) Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final Report, Platform Industrie 4.0

  14. 14.

    Kasper A, Xue Z, Dillmann R (2012) The kit object models database: an object model database for object recognition, localization and manipulation in service robotics. Int J Robot Res 31:927–934

    Article  Google Scholar 

  15. 15.

    Kitano H, Asada M, Kuniyoshi Y, Noda I, Osawa E Robocup: the Robot World Cup Initiative. In: 1st Int. conference on autonomous agents (1997)

  16. 16.

    Moll M, Sucan IA, Kavraki LE (2015) Benchmarking motion planning algorithms. IEEE Robot Autom Mag 22:96–102

    Article  Google Scholar 

  17. 17.

    Niemueller T, Ewert D, Reuter S, Ferrein A (2013) Carologistics RoboCup team: autonomous referee box and visualization tool for the logistics league sponsored by Festo. RoboCup Grant Report Poster, RWTH Aachen University and FH Aachen UoaS.

  18. 18.

    Niemueller T, Ewert D, Reuter S, Ferrein A, Jeschke S, Lakemeyer G (2013) RoboCup Logistics League Sponsored by Festo: a competitive factory automation testbed. In: RoboCup Symposium

  19. 19.

    Niemueller T, Karpas E, Vaquero T, Timmons E (2016) Planning competition for logistics robots in simulation. In: WS on planning and robotics (PlanRob) at Int. Conf. on Aut. planning and scheduling (ICAPS)

  20. 20.

    Niemueller T, Lakemeyer G, Ferrein A (2013) Incremental task-level reasoning in a competitive factory automation scenario. In: AAAI spring symposium 2013—designing intelligent robots: reintegrating AI

  21. 21.

    Niemueller T, Lakemeyer G, Ferrein A (2015) The RoboCup logistics league as a benchmark for planning in robotics. In: WS on planning and robotics (PlanRob) at Int. Conf. on Aut. planning and scheduling (ICAPS)

  22. 22.

    Niemueller T, Lakemeyer G, Ferrein A, Reuter S, Ewert D, Jeschke S, Pensky D, Karras U () Proposal for advancements to the LLSF in 2014 and beyond. In: ICAR—1st workshop on developments in robocup leagues (2013)

  23. 23.

    Niemueller T, Lakemeyer G, Reuter S, Jeschke S, Ferrein A (2017) Cyber-physical systems—foundations, principles, and applications, chap. Benchmarking of Cyber-Physical Systems in Industrial Robotics—The RoboCup Logistics League as a CPS Benchmark Blueprint. Elsevier (to appear)

  24. 24.

    Niemueller T, Reuter S, Ferrein A, Jeschke S, Lakemeyer G (2015) Evaluation of the RoboCup logistics league and derived criteria for future competitions. In: RoboCup Symposium

  25. 25.

    Pennisi A, Bloisi DD, Iocchi L, Nardi D (2013) Ground truth acquisition of humanoid soccer robot behaviour. In: RoboCup symposium

  26. 26.

    Reinhart G, Krug S, Hüttner S, Mari Z, Riedelbauch F, Schlögel M (2010) Automatic configuration (plug&produce) of industrial ethernet networks. In: 9th IEEE/IAS international conference on Industry applications (INDUSCON), 2010, pp 1–6. doi:10.1109/INDUSCON.2010.5739892

  27. 27.

    RoboCup SPL Technical Committee (2015) RoboCup SPL Technical Committee: RoboCup Standard Platform League (NAO) Rule Book 2015

  28. 28.

    Schneider S, Hegger F, Hochgeschwender N, Dwiputra R, Moriarty A, Berghofer J, Kraetzschmar G (2015) Design and development of a benchmarking testbed for the factory of the future. In: IEEE International conference on emerging technologies and factory automation (ETFA)

  29. 29.

    Sturm J, Engelhard N, Endres F, Burgard W, Cremers D (2012) A benchmark for the evaluation of RGB-D slam systems. In: IEEE/RSJ international conference on intelligent robots and systems (IROS)

  30. 30.

    Wang Z, Gu F, He Y, Han J, Wang Y () Design and implementation of multiple-rotorcraft-flying-robot testbed. In: IEEE international conference on robotics and biomimetics (ROBIO) (2011)

  31. 31.

    Wygant RM (1989) CLIPS: a powerful development and delivery expert system tool. Comput Ind Eng 17(1–4):546–549

    Article  Google Scholar 

  32. 32.

    Zwilling F, Niemueller T, Lakemeyer G (2014) Simulation for the RoboCup logistics league with real-world environment agency and multi-level abstraction. In: RoboCup Symposium

Download references

Author information



Corresponding author

Correspondence to Tim Niemueller.

Additional information

T. Niemueller was supported by the German National Science Foundation (DFG) research unit FOR 1513 on Hybrid Reasoning for Intelligent Systems (

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niemueller, T., Zug, S., Schneider, S. et al. Knowledge-Based Instrumentation and Control for Competitive Industry-Inspired Robotic Domains. Künstl Intell 30, 289–299 (2016).

Download citation


  • Mobile robotics
  • Autonomy
  • Rule-based production systems
  • Smart factory
  • Factory instrumentation
  • RoboCup industrial
  • Benchmarking
  • Industry 4.0