KI - Künstliche Intelligenz

, Volume 30, Issue 3–4, pp 257–265 | Cite as

Integrating Qualitative Reasoning and Human-Robot Interaction in Domestic Service Robotics

  • Stefan Schiffer


In this paper we discuss a system layout for cognitive service robots and our implementation of such a system. Our focus is on integrating qualitative reasoning and human-robot interaction. After introducing the domestic service robotics domain with its challenges and the RoboCup@Home initiative we present our robot platform, its basic capabilities and its high-level reasoning system. Then, we discuss a system layout for a cognitive service robot in domestic domains, and we show how components of our service robot implement elements of such a system layout. We discuss strengths and limitations of these components and of the overall system.


Qualitative reasoning Human-robot interaction Domestic service robotics RoboCup@Home Situation calculus 



Large parts of this paper are based on my doctoral dissertation. I would like to acknowledge the support that I have received from Gerhard Lakemeyer during my dissertation. Also, I appreciate the contributions made by Alexander Ferrein and Tim Niemueller. I further want to thank the anonymous reviewers for their valuable and helpful comments.


  1. 1.
    Alami R, Clodic A, Montreuil V, Sisbot EA, Chatila R (2005) Task planning for human-robot interaction. In: Proc. Joint Conf. on Smart objects and ambient intelligence (sOc-EUSAI’05), pp 81–85. ACMGoogle Scholar
  2. 2.
    Beetz M, Jain D, Mösenlechner L, Tenorth M (2010) Towards performing everyday manipulation activities. Robot Auton Syst 58(9):1085–1095CrossRefGoogle Scholar
  3. 3.
    Belle V, Deselaers T, Schiffer S (2008) Randomized trees for real-time one-step face detection and recognition. In: Proc. Int’l Conf. on Pattern Recognition (ICPR’08), pp 1–4. IEEE Computer SocietyGoogle Scholar
  4. 4.
    Boutilier C, Reiter R, Soutchanski M, Thrun S (2000) Decision-theoretic, high-level agent programming in the situation calculus. In: Proc. Nat’l Conf. on Artificial Intelligence (AAAI-00) and Conf. on Innovative Applications of Artificial Intelligence (IAAI-00). AAAI Press, Menlo Park, CA, pp 355–362Google Scholar
  5. 5.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brenner, M.: Situation-aware interpretation, planning and execution of user commands by autonomous robots. In: The 16th IEEE International Symposium on Robot and Human interactive Communication (RO-MAN 2007), pp 540–545 (2007)Google Scholar
  7. 7.
    Breuer T, Giorgana Macedo GR, Hartanto R, Hochgeschwender N, Holz D, Hegger F, Jin Z, Müller C, Paulus J, Reckhaus M, Álvarez Ruiz JA, Plöger PG, Kraetzschmar GK Johnny (2012) An autonomous service robot for domestic environments. J Intell Robot Syst 66(1):245–272CrossRefGoogle Scholar
  8. 8.
    Chen X, Jin G, Ji J, Wang F, Xie J (2011) Kejia project: towards integrated intelligence for service robots. Multi-Agent Systems Lab, University of Science and Technology of China, Tech. repGoogle Scholar
  9. 9.
    Clementini E, Felice PD, Hernandez D (1997) Qualitative representation of positional information. Artif Intell 95(2):317–356MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Doostdar, M., Schiffer, S., Lakemeyer, G.: Robust speech recognition for service robotics applications. In: Proc. Int’l RoboCup Symposium (RoboCup 2008), LNCS, vol 5399. Springer, Berlin, pp 1–12 (2008)Google Scholar
  11. 11.
    Engleberg IN, Wynn DR (2006) Working in Groups: Communication Principles and Strategies, 4 edn. Allyn & Bacon, BostonGoogle Scholar
  12. 12.
    Ferrein A, Lakemeyer G (2008) Logic-based robot control in highly dynamic domains. Robot Auton Syst 56(11):980–991CrossRefGoogle Scholar
  13. 13.
    Ferrein A, Niemueller T, Schiffer S, Lakemeyer G (2013) Lessons learnt from developing the embodied AI platform CAESAR for domestic service robotics. In: Designing Intelligent Robots: Reintegrating AI II, Papers from the AAAI Spring Symposium. AAAIGoogle Scholar
  14. 14.
    Ferrein A, Schiffer S, Lakemeyer G (2008) A Fuzzy Set Semantics for Qualitative Fluents in the Situation Calculus. In: Proc. Int’l Conf. on Intelligent Robotics and Applications (ICIRA’08), pp 498–509. Springer, BerlinGoogle Scholar
  15. 15.
    Ferrein A, Schiffer S, Lakemeyer G (2009) Embedding fuzzy controllers into golog. In: Proc. IEEE Int’l Conf. on Fuzzy Systems (FUZZ-IEEE’09), pp 894–899. IEEEGoogle Scholar
  16. 16.
    Jacobs S, Ferrein A, Schiffer S, Beck D, Lakemeyer G (2009) Robust Collision Avoidance in Unknown Domestic Environments. In: Proc. of the Int’l RoboCup Symp. 2009 (RoboCup 2009), LNCS, vol 5949, pp 116–127. Springer, BerlinGoogle Scholar
  17. 17.
    Kitano H, Asada M, Kuniyoshi Y, Noda I, Osawa E (1997) RoboCup: The Robot World Cup Initiative. In: Proc. Int’l Conf. on Autonomous Agents, AGENTS ’97, pp 340–347. ACM, New York, NY, USAGoogle Scholar
  18. 18.
    Levesque HJ, Lakemeyer G (2008) Cognitive Robotics. In: van Harmelen F, Lifschitz V, Porter B (eds) Handbook of Knowledge Representation, chapter 23. Elsevier, Amsterdam, pp 869–886Google Scholar
  19. 19.
    McCarthy J (1968) Situations, Actions, and Causal Laws. Technical Report Memo 2, Stanford University, California, USA (1963). Published in Semantic Information Processing, ed. Minsky M. The MIT Press, CambridgeGoogle Scholar
  20. 20.
    Niemueller T, Ferrein A, Beck D, Lakemeyer G (2010) Design principles of the component-based robot software framework fawkes. In: Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). Springer, Heidelberg, pp 300–311Google Scholar
  21. 21.
    Niemueller T, Ferrein A, Lakemeyer G (2010) A lua-based behavior engine for controlling the humanoid robot nao. In: RoboCup 2009: Robot Soccer World Cup XIII. Springer, Heidelberg, pp 240–251Google Scholar
  22. 22.
    Niemueller T, Schiffer S, Lakemeyer G, Rezapour-Lakani S (2013) Life-long learning perception using cloud database technology. In: Proc. IROS Workshop on Cloud RoboticsGoogle Scholar
  23. 23.
    Reiter R (2001) Knowledge in Action. Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, Cambridge, MassachusettszbMATHGoogle Scholar
  24. 24.
    Schiffer S (2015) Integrating qualitative reasoning and human-robot interaction for domestic service robots. Dissertation, RWTH Aachen University, Department of Computer ScienceGoogle Scholar
  25. 25.
    Schiffer S, Baumgartner T, Beck D, Maleki-Fard B, Niemueller T, Schwering C, Lakemeyer G (2012) robOCD: Robotic Order Cups Demo—An Interactive Domestic Service Robotics Demo. In: Poster and Demo Session at the 35th German Conference on Artificial Intelligence (KI 2012), pp 150–154Google Scholar
  26. 26.
    Schiffer S, Baumgartner T, Lakemeyer G (2011) A modular approach to gesture recognition for interaction with a domestic service robot. In: Intelligent Robotics and Applications. Springer, Berline, pp 348–357Google Scholar
  27. 27.
    Schiffer S, Ferrein A, Lakemeyer G (2006) Football is coming home. In: Proc. 2006 Int’l Symp. on Practical Cognitive Agents and Robots (PCAR’06). ACM, New York, NY, USA, pp 39–50Google Scholar
  28. 28.
    Schiffer S, Ferrein A, Lakemeyer G (2012) Caesar—an intelligent domestic service robot. J Intell Serv Robot 1–15Google Scholar
  29. 29.
    Schiffer S, Ferrein A, Lakemeyer G (2012) Reasoning with qualitative positional information for domestic domains in the situation calculus. J Intell Robot Syst 66(1–2):273–300CrossRefGoogle Scholar
  30. 30.
    Schiffer S, Hoppe N, Lakemeyer G (2012) Flexible command interpretation on an interactive domestic service robot. In: Proc. Int’l Conf. on Agents and Artificial Intelligence (ICAART 2012). SciTePress, pp 26–35Google Scholar
  31. 31.
    Schiffer S, Hoppe N, Lakemeyer G (2013) Natural language interpretation for an interactive service robot in domestic domains. In: Agents and Artificial Intelligence, vol 358. Springer, Berlin, pp 39–53Google Scholar
  32. 32.
    Schiffer S, Wortmann A, Lakemeyer G (2010) Self-maintenance for autonomous robots controlled by readyLog. In: Proc. IARP Workshop on Technical Challenges for Dependable Robots in Human Environments. Toulouse, France, pp 101–107Google Scholar
  33. 33.
    Schiffer S, Wortmann A, Lakemeyer G (2010) Self-maintenance for autonomous robots in the situation calculus. In: Lakemeyer G, Levesque HJ, Pirri F (eds) Cognitive Robotics, no. 10081 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, GermanyGoogle Scholar
  34. 34.
    Strack A, Ferrein A, Lakemeyer G (2006) Laser-based localization with sparse landmarks. In: RoboCup 2005: Robot Soccer World Cup IX. Springer, Berlin, pp 569–576Google Scholar
  35. 35.
    van der Zant T, Wisspeintner T (2005) RoboCup X: a proposal for a new league where robocup goes real world. In: RoboCup. Springer, Berline, pp 166–172Google Scholar
  36. 36.
    van der Zant T, Wisspeintner T (2007) Robotic Soccer, chap. RoboCup@Home: creating and benchmarking tomorrows service robot applications. I-Tech Education and Publishing, pp 521–528Google Scholar
  37. 37.
    Wisspeintner T, van der Zant T, Iocchi L, Schiffer S (2009) RoboCup@Home: scientific competition and benchmarking for domestic service robots. Interact Stud 10(3):392–426CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Knowledge-Based Systems GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations