KI - Künstliche Intelligenz

, Volume 30, Issue 2, pp 149–157 | Cite as

LOD for Library Science: Benefits of Applying Linked Open Data in the Digital Library Setting

Retrospects and Research Topics
Technical Contribution

Abstract

Linked Open Data (LOD) has gained widespread adoption by large industries as well as non-profit organizations and governmental organizations. One of the early adopters of LOD technologies are libraries. Since the “early years”, libraries have been key use case and innovation driver for LOD and significantly contributed to the adoption of semantic technologies. The first part of this paper presents selected success stories of current activities in the Linked Data Library community. In a nutshell, these studies include (1) a conceptualization of the Linked Data Value chain, (2) a case study for consumption of Linked Data in a digital journal environment, and (3) an approach to publish metadata on the Semantic Web from an Open Access repository. These stories reveal a strong relationship between LOD in libraries and research topics addressed in traditional fields of computer science such as artificial intelligence, databases, and knowledge discovery. Thus, in the second part of this paper we systematically review the relation of LOD in digital libraries from a computer science perspective. We discuss current LOD research topics such as data integration and schema integration, distributed data management, and others. These challenges have been discussed with computer scientists at a German national database meetup as well as with librarians from ZBW—Leibniz Information Center for Economics and at international librarians meetup.

Keywords

Digital Libraries Semantic Web Linked Open Data 

References

  1. 1.
    Berners-Lee T (2009) Linked-data design issues. W3C design issue document. http://www.w3.org/DesignIssue/LinkedData.html
  2. 2.
    Böschen F, Scherp A (2015) Multi-oriented text extraction from information graphics. In: Symposium on Document Engineering (DocEng); Lausanne, Schwitzerland. ACMGoogle Scholar
  3. 3.
    Euzenat J, Shvaiko P (2013) Ontology Matching, Second Edition. SpringerGoogle Scholar
  4. 4.
    Görlitz O, Staab S (2011) Federated data management and query optimization for linked open data. In: Vakali A, Jain LC (eds) New Directions in Web Data Management 1, Studies in Computational Intelligence, vol. 331, pp. 109–137Google Scholar
  5. 5.
    Gottron T, Scherp A, Krayer B, Peters A (2013) Lodatio: using a schema-level index to support users infinding relevant sources of linked data. In: Benjamins VR, d’Aquin M, Gordon A (eds) Proceedings of the 7th international conference on knowledge capture, K-CAP 2013, Banff, Canada, June 23–26, 2013. ACM, pp. 105–108Google Scholar
  6. 6.
    Große-Bölting G, Nishioka C, Scherp A (2015) A comparison of different strategies for automated semantic document annotation. In: International conference on knowledge capture (KCAP); Palisades, NY. ACMGoogle Scholar
  7. 7.
    Halpin H, Presutti V (2009) An ontology of resources: Solving the identity crisis. In: European Semantic Web Conference, pp. 521–534Google Scholar
  8. 8.
    Harth A, Umbrich J, Hogan A, Decker S (2007) YARS2: A federated repository for querying graph structured data from the web. In: Aberer K, Choi K, Noy NF, Allemang D, Lee K, Nixon LJB, Golbeck J, Mika P, Maynard D, Mizoguchi R, Schreiber G, Cudré-Mauroux P (eds) The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11–15, 2007. Lecture Notes in Computer Science, vol. 4825, Springer, pp. 211–224Google Scholar
  9. 9.
    Hartig O, Bizer C, Freytag JC (2009) Executing SPARQL queries over the web of linked data. In: Bernstein A, Karger DR, Heath T, Feigenbaum L, Maynard D, Motta E, Thirunarayan K (eds) The Semantic Web-ISWC 2009, 8th International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25–29, 2009. Proceedings, Lecture Notes in Computer Science, vol. 5823, Springer, pp 293–309Google Scholar
  10. 10.
    Heath T, Bizer C (2011) Linked data: evolving the web into a global data space, 1st edn. Morgan and ClaypoolGoogle Scholar
  11. 11.
    Kanani P, McCallum A, Pal C (2007) Improving author coreference by resource-bounded information gathering from the web. In: Conference on Artifical intelligence, Morgan Kaufmann Publishers Inc., San Francisco, pp 429–434Google Scholar
  12. 12.
    Kasten A, Scherp A, Schauß P (2014) A framework for iterative signing of graph data on the web. In: Presutti V, d’Amato C, Gandon F, d’Aquin M, Staab S, Tordai A (eds) The Semantic Web: trends and challenges-11th international conference, ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014. Proceedings, Lecture Notes in Computer Science, vol. 8465, Springer, pp 146–160Google Scholar
  13. 13.
    Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604–632MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Konrath M, Gottron T, Staab S, Scherp A (2012) Schemex—efficient construction of a data catalogue by stream-based indexing of linked data. J Web Sem 16:52–58CrossRefGoogle Scholar
  15. 15.
    Latif A, Afzal MT, Helic D, Tochtermann K, Maurer HA (2010) Discovery and construction of authors’ profile from linked data (a case study for open digital journal). In: Bizer C, Heath T, Berners-Lee T, Hausenblas M (eds) Proceedings of the WWW2010 Workshop on Linked Data on the Web, LDOW 2010, Raleigh, USA, April 27, 2010, CEUR Workshop Proceedings, vol. 628. CEUR-WS.org. http://ceur-ws.org/Vol-628/ldow2010_paper18.pdf
  16. 16.
    Latif A, Afzal MT, Höfler P, Saeed AU, Tochtermann K (2009) Turning keywords into uris: simplified user interfaces for exploring linked data. In: Proceedings of the 2nd international conference on interaction sciences: information technology, culture and human 2009, Seoul, Korea, 24-26 November 2009, pp 76–81Google Scholar
  17. 17.
    Latif A, Borst T, Tochtermann K (2014) Exposing data from an open access repository for economics as linked data. D-Lib Magazine 20(9/10). doi:10.1045/september2014-latif
  18. 18.
    Latif A, Saeed AU, Höfler P, Stocker A, Wagner C (2009) The linked data value chain: a lightweight model for business engineers. In: Paschke A, Weigand H, Behrendt W, Tochtermann K, Pellegrini T (eds) 5th international conference on semantic systems, Graz, Austria, September 2–4, 2009. Proceedings, Verlag der Technischen Universität Graz, pp 568–575Google Scholar
  19. 19.
    Latif A, Saeed AU, Höfler P, Tochtermann K, Afzal MT (2010) Harvesting pertinent resources from linked open data. JDIM 8(3):205Google Scholar
  20. 20.
    Medelyan O, Frank E, Witten IH (2009) Human-competitive tagging using automatic keyphrase extraction. In: Proceedings of the 2009 conference on empirical methods in natural language processing, EMNLP 2009, 6–7 August 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL. ACL, pp 1318–1327Google Scholar
  21. 21.
    Mödden E (2013) Zukunftsfähige Inhaltserschließung Strategien und Perspektiven in der Deutschen Nationalbibliothek (2013). http://www.dnb.de/SharedDocs/Downloads/DE/DNB/wir/petrus/petrusZukunftsfaehigeInhaltserschlie%C3%9Fung.pdf?__blob=publicationFile
  22. 22.
    Möller G, Carstensen KU, Diekmann B (2000) GERHARD (German Harvest Automated Retrieval and Directory). KI - Künstliche IntelligenzGoogle Scholar
  23. 23.
    Neubert J, Tochtermann K (2012) Linked library data: offering a backbone for the semantic web. In: Third knowledge technology Week, Kajang, Malaysia 2011, pp 37–45. doi:10.1007/978-3-642-32826-8_4
  24. 24.
    Peters I, Scherp A, Tochtermann K () Science 2.0 and Libraries: convergence of two sides of the same coin at ZBW Leibniz Information Centre for Economics. IEEE STCSN E-Letter on Science 2.0 3(1) (2015). http://stcsn.ieee.net/e-letter/stcsn-e-letter-vol-3-no-1
  25. 25.
    Tummarello G, Cyganiak R, Catasta M, Danielczyk S, Delbru R, Decker S (2010) Sig.ma: live views on the web of data. J Web Sem 8(4):355–364Google Scholar
  26. 26.
    Wick ML, Rohanimanesh K, Schultz K, McCallum A (2008) A unified approach for schema matching, coreference and canonicalization. In: KDD ’08: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, pp 722–730Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.ZBW-Leibniz Information Center for EconomicsKielGermany

Personalised recommendations