KI - Künstliche Intelligenz

, Volume 30, Issue 1, pp 11–20 | Cite as

Companion-Technology: An Overview

Survey

Abstract

Companion-technology is an emerging field of cross-disciplinary research. It aims at developing technical systems that appear as “Companions” to their users. They serve as co-operative agents assisting in particular tasks or, in a more general sense, even give companionship to humans. Overall, Companion-technology enables technical systems to smartly adapt their services to individual users’ current needs, their requests, situation, and emotion. We give an introduction to the field, discuss the most relevant application areas that will benefit from its developments, and review the related research projects.

Keywords

Artificial companions Companion-systems Human-technology interaction 

References

  1. 1.
    AAAC (the association for the advancement of affective computing). http://emotion-research.net
  2. 2.
    ACCESS (assisted cognition in community, employment and support settings). http://cognitivetech.washington.edu
  3. 3.
    AIDE (adaptive multimodal interfaces to assist disabled people in daily activities). http://aideproject.eu
  4. 4.
  5. 5.
    APRIL (applications of personal robotics for interaction and learning). http://cordis.europa.eu/project/rcn/197987_en.html
  6. 6.
    ARIA-VALUSPA (artificial retrieval of information assistants - virtual agents with linguistic understanding, social skills, and personalized aspects). http://aria-agent.eu
  7. 7.
    BODY-UI (body-based user interfaces). http://www.body-ui.eu
  8. 8.
    CA-RoboCom (robot companions for citizens). http://www.robotcompanions.eu
  9. 9.
    CITEC (cognitive interaction technology). http://www.cit-ec.de
  10. 10.
    CODEFROR (cognitive development for friendly robots and rehabilitation). https://www.codefror.eu
  11. 11.
  12. 12.
    Companion-technology for cognitive technical systems. http://www.companion-technology.org
  13. 13.
  14. 14.
    CorpAGEst (corpus-based multimodal approach to the pragmatic competence of the elderly). http://corpagest.org
  15. 15.
    CoTeSys (cognition for technical systems). http://cotesys.in.tum.de
  16. 16.
    EMBASSI (Elektronische multimediale Bedien- und Service-Assistenz). http://ftb-esv.de/embass.html
  17. 17.
  18. 18.
    Humanoid robots-learning and cooperating multimodal robots (CRC 588). http://csl.anthropomatik.kit.edu/english/sfb.php
  19. 19.
    MindSee (symbiotic mind computer interaction for information seeking). http://mindsee.eu
  20. 20.
    Miraculous-life for elderly independent living. http://www.miraculous-life.eu
  21. 21.
  22. 22.
  23. 23.
  24. 24.
    MMCI (multimodal computing and interaction). http://www.mmci.uni-saarland.de
  25. 25.
  26. 26.
    PAL (personal assistant for healthy lifestyle). http://www.pal4u.eu
  27. 27.
  28. 28.
    RAMCIP (robotic assistant for mci patients at home). http://ramcip-project.eu
  29. 29.
    SEMAINE (sustained emotionally coloured machine-human interaction using non-verbal expression). http://www.semaine-project.eu
  30. 30.
  31. 31.
    Augusto JC, Callaghan V, Cook D, Kameas A, Satoh I (2013) Intelligent environments: a manifesto. Hum Centric Comput Inf Sci 3(1):1–18. doi:10.1186/2192-1962-3-12 CrossRefGoogle Scholar
  32. 32.
    Awaad I, Kraetzschmar GK, Hertzberg J (2015) The role of functional affordances in socializing robots. Int J Soc Robot 7(4):421–438. doi:10.1007/s12369-015-0281-3 CrossRefGoogle Scholar
  33. 33.
    Beetz M, Buss M, Wollherr D (2007) Cognitive technical systems–what is the role of artificial intelligence? In: Proc. of the 30th German Conference on Artificial Intelligence (KI), pp 19–42. Springer. doi:10.1007/978-3-540-74565-5_3
  34. 34.
    Beetz M, Jain D, Mösenlechner L, Tenorth M, Kunze L, Blodow N, Pangercic D (2012) Cognition-enabled autonomous robot control for the realization of home chore task intelligence. Proc IEEE 100(8):2454–2471. doi:10.1109/JPROC.2012.2200552 CrossRefGoogle Scholar
  35. 35.
    Beetz M, Kirsch A (eds) (2010) Künstliche Intelligenz–special Issue on cognition for technical systems, vol 24, issue 4Google Scholar
  36. 36.
    Beetz M, Stulp F, Radig B, Bandouch J, Blodow N, Dolha M, Fedrizzi A, Jain D, Klank U, Kresse I, Maldonado A, Marton Z, Mösenlechner L, Ruiz F, Rusu RB, Tenorth M (2008) The assistive kitchen–a demonstration scenario for cognitive technical systems. In: The 17th IEEE International symposium on robot and human interactive communication (RO-MAN), IEEE, pp 1–8. doi:10.1109/ROMAN.2008.4600634
  37. 37.
    Bemelmans R, Gelderblom GJ, Jonker P, De Witte L (2012) Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J Am Med Dir Assoc 13(2):114–120. doi:10.1016/j.jamda.2010.10.002 CrossRefGoogle Scholar
  38. 38.
    Bercher P, Biundo S, Geier T, Hoernle T, Nothdurft F, Richter F, Schattenberg B (2014) Plan, repair, execute, explain–how planning helps to assemble your home theater. In: Proc. of the 24th international conference on automated planning and scheduling (ICAPS), pp 386–394. AAAI PressGoogle Scholar
  39. 39.
    Bercher P, Richter F, Hörnle T, Geier T, Höller D, Behnke G, Nothdurft F, Honold F, Minker W, Weber M, Biundo S (2015) A planning-based assistance system for setting up a home theater. In: Proc. of the 29th national conference on artificial intelligence (AAAI), pp 4264–4265. AAAI PressGoogle Scholar
  40. 40.
    Bishop R (2000) A survey of intelligent vehicle applications worldwide. In: Proc. of the IEEE intelligent vehicles symposium, pp 25–30. IEEE. doi:10.1109/IVS.2000.898313
  41. 41.
    Biundo S, Bercher P, Geier T, Müller F, Schattenberg B (2011) Advanced user assistance based on AI planning. Cogn Syst Res 12(3–4):219–236. doi:10.1016/j.cogsys.2010.12.005 (Special Issue on Complex Cognition)CrossRefGoogle Scholar
  42. 42.
    Biundo S, Wendemuth A (2010) Von kognitiven technischen Systemen zu Companion-Systemen. Künstliche Intelligenz 24(4):335–339. doi:10.1007/s13218-010-0056-9 CrossRefGoogle Scholar
  43. 43.
    Biundo S, Wendemuth A (eds) (2016) Companion technology—a paradigm shift in human-technology interaction. Springer (Forthcoming)Google Scholar
  44. 44.
    Biundo S, Wendemuth A (2016) Companion-technology for cognitive technical systems. Künstl Intell. doi:10.1007/s13218-015-0414-8 Google Scholar
  45. 45.
    Boger J, Hoey J, Poupart P, Boutilier C, Fernie G, Mihailidis A (2006) A planning system based on markov decision processes to guide people with dementia through activities of daily living. IEEE Trans Inf Technol Biomed 10(2):323–333. doi:10.1109/TITB.2006.864480 CrossRefGoogle Scholar
  46. 46.
    Breazeal C, Takanishi A, Kobayashi T (2008) Social robots that interact with people. In: Springer handbook of robotics, pp 1349–1369. doi:10.1007/978-3-540-30301-5_59
  47. 47.
    Breuer T, Macedo GRG, Hartanto R, Hochgeschwender N, Holz D, Hegger F, Jin Z, Mueller CA, Paulus J, Reckhaus M, Ruiz JAÁ, Plöger P, Kraetzschmar GK (2012) Johnny: an autonomous service robot for domestic environments. J Intell Robot Syst 66(1–2):245–272. doi:10.1007/s10846-011-9608-y CrossRefGoogle Scholar
  48. 48.
    Broekens J, Heerink M, Rosendal H (2009) Assistive social robots in elderly care: a review. Gerontechnology 8(2):94–103. doi:10.4017/gt.2009.08.02.002.00 CrossRefGoogle Scholar
  49. 49.
    Buss M, Beetz M (2010) CoTeSys—cognition for technical systems. Künstliche Intelligenz 24(4):323–327. doi:10.1007/s13218-010-0061-z CrossRefGoogle Scholar
  50. 50.
    Coradeschi S, Cesta A, Cortellessa G, Coraci L, Galindo C, Gonzalez J, Karlsson L, Forsberg A, Frennert S, Furfari F, Loutfi A, Orlandini A, Palumbo F, Pecora F, von Rump S, Štimec A, Ullberg J, Ötslund B (2014) Giraffplus: a system for monitoring activities and physiological parameters and promoting social interaction for elderly. In: Human-computer systems interaction: backgrounds and applications 3, Advances in intelligent systems and computing, vol 300, pp 261–271. Springer International Publishing. doi:10.1007/978-3-319-08491-6_22
  51. 51.
    Dakopoulos D, Bourbakis NG (2010) Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 40(1):25–35. doi:10.1109/TSMCC.2009.2021255 CrossRefGoogle Scholar
  52. 52.
    Demiris G, Rantz MJ, Aud MA, Marek KD, Tyrer HW, Skubic M, Hussam AA (2004) Older adults’ attitudes towards and perceptions of ‘smart home’ technologies: a pilot study. Inf Health Soc Care 29(2):87–94. doi:10.1080/14639230410001684387 CrossRefGoogle Scholar
  53. 53.
    Dillmann R, Asfour T (2008) Collaborative research center on humanoid robots (SFB 588). Künstliche Intelligenz 22(4):26–28Google Scholar
  54. 54.
    Fong T, Nourbakhsh IR, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42(3–4):143–166. doi:10.1016/S0921-8890(02)00372-X CrossRefMATHGoogle Scholar
  55. 55.
    Forlizzi J, DiSalvo C (2006) Service robots in the domestic environment: a study of the roomba vacuum in the home, pp 258–265. ACM. doi:10.1145/1121241.1121286
  56. 56.
    Gaul S, Ziefle M (2009) Smart home technologies: Insights into generation-specific acceptance motives. In: HCI and usability for e-inclusion, Lecture notes in computer science, vol 5889, pp 312–332. Springer. doi:10.1007/978-3-642-10308-7_22
  57. 57.
    Glodek M, Honold F, Geier T, Krell G, Nothdurft F, Reuter S, Schüssel F, Hörnle T, Dietmayer K, Minker W, Biundo S, Weber M, Palm G, Schwenker F (2015) Fusion paradigms in cognitive technical systems for humancomputer interaction. Neurocomputing 161:17–37. doi:10.1016/j.neucom.2015.01.076 CrossRefGoogle Scholar
  58. 58.
    Goodrich MA, Schultz AC (2007) Human-robot interaction: a survey. Found Trends Hum Comput Interact 1(3):203–275. doi:10.1561/1100000005 CrossRefMATHGoogle Scholar
  59. 59.
    Harper R (2006) Inside the smart home. Springer Science & Business MediaGoogle Scholar
  60. 60.
    Herfet T, Kirste T, Schnaider M (2001) EMBASSI multimodal assistance for infotainment and service infrastructures. Comput Graph 25(4):581–592. doi:10.1016/S0097-8493(01)00086-3 CrossRefGoogle Scholar
  61. 61.
    Hildebrand A, Sá V (2000) EMBASSI: electronic multimedia and service assistance. In: Proc. of the intelligent interactive assistance & mobile multimedia computing (IMC)Google Scholar
  62. 62.
    Honold F, Bercher P, Richter F, Nothdurft F, Geier T, Barth R, Hörnle T, Schüssel F, Reuter S, Rau M, Bertrand G, Seegebarth B, Kurzok P, Schattenberg B, Minker W, Weber M, Biundo S (2014) Companion-technology: towards user- and situation-adaptive functionality of technical systems. In: 10th international conference on intelligent environments (IE), pp 378–381. IEEE. doi:10.1109/IE.2014.60
  63. 63.
    Honold F, Schüssel F, Weber M (2012) Adaptive probabilistic fission for multimodal systems. In: Proc. of the 24th Australian computer-human interaction conference, OzCHI ’12, pp 222–231. ACM. doi:10.1145/2414536.2414575
  64. 64.
    Jiang L, Liu DY, Yang B (2004) Smart home research. In: Proc. of the Third conference on machine learning and cybernetics, vol 2, pp 659–663. IEEE. doi:10.1109/ICMLC.2004.1382266
  65. 65.
    Kautz H, Arnstein L, Borriello G, Etzioni O, Fox D (2002) An overview of the assisted cognition project. In: AAAI workshop on automation as caregiver: the role of intelligent technology in elder care, pp 60–65Google Scholar
  66. 66.
    Lindgren A, Chen F (2006) State of the art analysis: an overview of advanced driver assistance systems (ADAS) and possible human factors issues. In: Human factors and economics aspects on safety—Proc. of the Swedish human factors network (HFN) conference, pp 38–50Google Scholar
  67. 67.
    Van der Loos HFM, Reinkensmeyer DJ (2008) Rehabilitation and health care robotics. In: Springer handbook of robotics, pp 1223–1251. doi:10.1007/978-3-540-30301-5_54
  68. 68.
    Aliz-e Project Team (2012) The ALIZ-E project: adaptive strategies for sustainable long-term social interaction. Poster and demo track of the 35th German conference on artificial intelligence at KI 2012, pp. 39–41Google Scholar
  69. 69.
    Meuleau N, Plaunt C, Smith DE, Smith T (2009) An emergency landing planner for damaged aircraft. In: Proc. of the 21st innovative applications of artificial intelligence conference (IAAI), pp 114–121. AAAI PressGoogle Scholar
  70. 70.
    Obrist M, Tuch AN, Hornbaek K (2014) Opportunities for odor: experiences with smell and implications for technology. In: Proc. of the SIGCHI conference on human factors in computing systems, pp 2843–2852. ACM. doi:10.1145/2556288.2557008
  71. 71.
    Peters C, Hermann T, Wachsmuth S, Hoey J (2014) Automatic task assistance for people with cognitive disabilities in brushing teeth—a user study with the tebra system. ACM Trans Access Comput (TACCESS) 5(4):1–34. doi:10.1145/2579700 CrossRefGoogle Scholar
  72. 72.
    Petrick R, Foster ME (2013) Planning for social interaction in a robot bartender domain. In: Proc. of the 23rd international conference on automated planning and scheduling (ICAPS), pp 389–397. AAAI PressGoogle Scholar
  73. 73.
    Petta P, Pelachaud C, Cowie R (eds) (2011) Emotion-oriented systems: the humaine handbook. cognitive technologies. Springer. doi:10.1007/978-3-642-15184-2
  74. 74.
    Picard RW (1997) Affective computing, vol 252. MIT press, CambridgeGoogle Scholar
  75. 75.
    Pineau J, Montemerlo M, Pollack M, Roy N, Thrun S (2003) Towards robotic assistants in nursing homes: challenges and results. Robot Auton Syst 42(3):271–281CrossRefMATHGoogle Scholar
  76. 76.
    Pollack ME (2002) Planning technology for intelligent cognitive orthotics. In: Proc. of the 6th international conference on artificial intelligence planning systems (AIPS), pp 322–332. AAAI PressGoogle Scholar
  77. 77.
    Prassler E, Kosuge K (2008) Domestic robotics. In: Springer handbook of robotics, pp 1253–1281. doi:10.1007/978-3-540-30301-5_55
  78. 78.
    Putze F, Schultz T (2014) Adaptive cognitive technical systems. J Neurosci Methods 234:108–115. doi:10.1016/j.jneumeth.2014.06.029 CrossRefGoogle Scholar
  79. 79.
    Rashidi P, Mihailidis A (2013) A survey on ambient-assisted living tools for older adults. IEEE J Biomed Health Inf 17(3):579–590. doi:10.1109/JBHI.2012.2234129 CrossRefGoogle Scholar
  80. 80.
    Rialle V, Duchene F, Noury N, Bajolle L, Demongeot J (2002) Health ”smart” home: Information technology for patients at home. Telemed J E-Health 8(4):395–409CrossRefGoogle Scholar
  81. 81.
    Ritter HJ (2010) Cognitive interaction technology-goals and perspectives of excellence cluster CITEC. Künstliche Intelligenz 24(4):319–322. doi:10.1007/s13218-010-0063-x CrossRefGoogle Scholar
  82. 82.
    Roy N, Baltus G, Fox D, Gemperle F, Goetz J, Hirsch T, Margaritis D, Montemerlo M, Pineau J, Schulte J, Thrun S (2000) Towards personal service robots for the elderly. In: Workshop on Interactive robots and entertainment (WIRE)Google Scholar
  83. 83.
    Schröder M, Bevacqua E, Cowie R, Eyben F, Gunes H, Heylen D, ter Maat M, McKeown G, Pammi S, Pantic M, Pelachaud C, Schuller B, de Sevin E, Valstar M, Wöllmer M (2011) Building autonomous sensitive artificial listeners. IEEE Trans Affect Comput (TAC) 99(1):1–1Google Scholar
  84. 84.
    Seidel H (2008) Excellence cluster “multimodal computing and interaction”– robust, efficient and intelligent processing of text, speech, visual data, and high dimensional representations. Inf Technol 50(4):253–257. doi10.1524/itit.2008.0492
  85. 85.
    Shaout A, Colella D, Awad S (2011) Advanced driver assistance systems—past, present and future. In: Seventh international computer engineering conference (ICENCO), pp 72–82. doi:10.1109/ICENCO.2011.6153935
  86. 86.
    Vernon D, Metta G, Sandini G (2007) A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. Trans Evol Comput 11(2):151–180. doi:10.1109/TEVC.2006.890274 CrossRefGoogle Scholar
  87. 87.
    Wada K, Shibata T (2007) Social effects of robot therapy in a care house - change of social network of the residents for two months. In: International conference on robotics and automation, pp 1250–1255. IEEE. doi:10.1109/ROBOT.2007.363156
  88. 88.
    Wada K, Shibata T, Musha T, Kimura S (2008) Robot therapy for elders affected by dementia. IEEE Eng Med Biol Mag 27(4):53–60. doi:10.1109/MEMB.2008.919496 CrossRefGoogle Scholar
  89. 89.
    Wada M, Yoon KS, Hashimoto H (2003) Development of advanced parking assistance system. IEEE Trans Ind Electron 50(1):4–17. doi:10.1109/TIE.2002.807690 CrossRefGoogle Scholar
  90. 90.
    Wahlster W (ed) (2006) SmartKom: foundations of multimodal dialogue systems. Springer. doi:10.1007/3-540-36678-4
  91. 91.
    Wendemuth A, Biundo S (2012) A companion technology for cognitive technical systems. In: Cognitive behavioural systems, lecture notes in computer science, pp 89–103. SpringerGoogle Scholar
  92. 92.
    Wilks Y (2010) Close engagements with artificial companions: key social, psychological, ethical and design issues, natural language processing, vol 8. John Benjamins PublishingGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Artificial IntelligenceUlm UniversityUlmGermany
  2. 2.Büro für intelligente Technologie-BeratungLaupheimGermany

Personalised recommendations