KI - Künstliche Intelligenz

, Volume 29, Issue 3, pp 247–253 | Cite as

Higher-Level Cognition and Computation: A Survey

  • Marco Ragni
  • Frieder Stolzenburg
Technical Contribution


Higher-level cognition is one of the constituents of our human mental abilities and subsumes reasoning, planning, language understanding and processing, and problem solving. A deeper understanding can lead to core insights to human cognition and to improve cognitive systems. There is, however, so far no unique characterization of the processes of human cognition. This survey introduces different approaches from cognitive architectures, artificial neural networks, and Bayesian modeling from a modeling perspective to vibrant fields such as connecting neurobiological processes with computational processes of reasoning, frameworks of rationality, and non-monotonic logics and common-sense reasoning. The survey ends with a set of five core challenges and open questions relevant for future research.


Higher-level cognition Cognitive and computational modeling Artificial intelligence Reasoning Problem solving 



This work has been partially supported by a Heisenberg scholarship to the first author under Grant No. RA 1934/3-1 and within a project in the DFG-SPP New Frameworks of Rationality under Grant No. RA 1934/2-1.


  1. 1.
    Anderson JR (1983) The Architecture of Cognition. Harvard University Press, CambridgeGoogle Scholar
  2. 2.
    Anderson JR (2007) How can the human mind occur in the physical universe?. Oxford University Press, New YorkCrossRefGoogle Scholar
  3. 3.
    Ariely D (2009) Predictably Irrational. The Hidden Forces That Shape Our Decisions. Harper Collins, Revised and Expanded EditionGoogle Scholar
  4. 4.
    Besold T, Hernández-Orallo J, Schmid U (2015) Can machine intelligence be measured in the same way as human intelligence? KI - Künstliche IntelligenzGoogle Scholar
  5. 5.
    Brewka G, Polberg S, Woltran S (2014) Generalizations of Dung frameworks and their role in formal argumentation. IEEE Intell Syst 29(1):30–38CrossRefGoogle Scholar
  6. 6.
    Bringsjord S (2011) Psychometric artificial intelligence. J Exp Theor Artif Intell 23(3):271–277CrossRefGoogle Scholar
  7. 7.
    Bringsjord S, Schimanski B (2003) What is Artificial Intelligence? Psychometric AI as an Answer. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03). Morgan Kaufmann, pp 887–893Google Scholar
  8. 8.
    Chater N, Tenenbaum JB, Yuille A (2006) Probabilistic models of cognition: conceptual foundations. Trends Cognitive Sci 10(7):287–291CrossRefGoogle Scholar
  9. 9.
    Chesñevar CI, Maguitman AG, Loui RP (2000) Logical models of argument. ACM Comput Surv 32:337–383CrossRefGoogle Scholar
  10. 10.
    Dietz EA, Hölldobler S, Ragni M (2012) A Computational Approach to the Suppression Task. In: Miyake N, Peebles D, Cooper R (eds) Proceedings of the 34th Annual Conference of the Cognitive Science Society. Cognitive Science Society, Austin, pp 1500–1505Google Scholar
  11. 11.
    Dietz EA, Hölldobler S, Ragni M (2012) A computational logic approach to the suppression task. In: Proceedings of the 34th Cognitive Science ConferenceGoogle Scholar
  12. 12.
    Dietz EA, Hölldobler S, Ragni M (2013) A Computational Logic Approach to the Abstract and the Social Case of the Selection Task. In: Morgenstern L, Davis E, Williams MA (eds) 11th International Symposium on Logical Formalizations of Commonsense ResaoningGoogle Scholar
  13. 13.
    Dung PM, Kowalski RA, Toni F (2006) Dialectic proof procedures for assumption-based, admissible argumentation. Artif Intell 170(2):114–159MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eliasmith C (2013) How to build a brain: a neural architecture for biological cognition. Oxford University PressGoogle Scholar
  15. 15.
    Funke J (2010) Complex problem solving: a case for complex cognition? Cognitive Process 11:133–142CrossRefGoogle Scholar
  16. 16.
    Furbach U, Schon C, Stolzenburg F (2015) Cognitive systems and question answering. Industrie 4.0. Management 31(1):29–32Google Scholar
  17. 17.
    Griffiths TL, Tenenbaum JB (2005) Structure and strength in causal induction. Cognitive Psychol 51:354–384CrossRefGoogle Scholar
  18. 18.
    Griffiths TL, Tenenbaum JB (2007) From mere coincidences to meaningful discoveries. Cognition 103(2):180–226CrossRefGoogle Scholar
  19. 19.
    Hegarty M (2004) Mechanical reasoning by mental simulation. Trends Cognitive Sci 8(6):280–285CrossRefGoogle Scholar
  20. 20.
    Hernández-Orallo J, Dowe DL, Hernández-Lloreda MV (2014) Universal psychometrics: measuring cognitive abilities in the machine kingdom. Cognitive Syst Res 27:50–74CrossRefGoogle Scholar
  21. 21.
    Just MA, Carpenter PA, Varma S (1999) Computational modeling of high-level cognition and brain function. Human Brain Mapp 8:128–136CrossRefGoogle Scholar
  22. 22.
    Kahneman D (2011) Thinking. Fast and Slow. Farrar, Straus and GirouxGoogle Scholar
  23. 23.
    Khemlani S, Johnson-Laird PN (2012) Theories of the syllogism: a meta-analysis. Psychological BulletinGoogle Scholar
  24. 24.
    Khemlani S, Mackiewicz R, Bucciarelli M, Johnson-Laird P (2013) Kinematic mental simulations in abduction and deduction. Proc Natl Acad Sci 110(42):16766–16771CrossRefGoogle Scholar
  25. 25.
    Knauff M (2013) Space to reason: a spatial theory of human thought. MIT PressGoogle Scholar
  26. 26.
    Knauff M, Wolf AG (2010) Complex cognition: the science of human reasoning, problem-solving, and decision-making. Cognitive Process 11(2):99–102CrossRefGoogle Scholar
  27. 27.
    Laird JE (2012) The Soar Cognitive Architecture. MIT PressGoogle Scholar
  28. 28.
    Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. Freeman, New YorkGoogle Scholar
  29. 29.
    Matuszek C, Cabral J, Witbrock MJ, DeOliveira J (2006) An introduction to the syntax and content of Cyc. In: AAAI Spring Symposium: Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering. Citeseer, pp 44–49Google Scholar
  30. 30.
    McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mueller ET (2014) Commonsense Reasoning, 2nd edn. Morgan Kaufmann, San FranciscoGoogle Scholar
  32. 32.
    Newell A (1990) Unified theories of cognition. Harvard University Press, CambridgeGoogle Scholar
  33. 33.
    Newell A, Simon HA (1972) Human problem solving. Prentice-HallGoogle Scholar
  34. 34.
    Nute D (2003) Defeasible logic. In: Bartenstein O, Geske U, Hannebauer M, Yoshie O (eds) Web Knowledge Management and Decision Support, lecture Notes in Computer Science, vol. 2543. Springer, Berlin, Heidelberg, pp 151–169Google Scholar
  35. 35.
    Oaksford M, Chater N (2007) Bayesian rationality: The probabilistic approach to human reasoning. Oxford University Press, USACrossRefGoogle Scholar
  36. 36.
    Ragni M, Klein A (2011) Predicting numbers: an AI approach to solving number series. In: Edelkamp S, Bach J (eds) Proceedings of the 34th German Conference on Artificial Intelligence (KI-2011), LNCS. Springer (2011)Google Scholar
  37. 37.
    Ragni M, Klein A (2011) Solving Number Series—architectural properties of successful artificial neural networks. In: Madani K, Kacprzyk J, Filipe J (eds) NCTA 2011—Proceedings of the International Conference on Neural Computation Theory and Applications. SciTePress, pp 224–229Google Scholar
  38. 38.
    Ragni M, Steffenhagen F, Klein A (2011) Generalized dynamic stock and flow systems: an AI approach. Cognitive Syst Res 12(3–4):309–320CrossRefGoogle Scholar
  39. 39.
    Robinson A, Voronkov A (eds) (2001) Handbook of Automated Reasoning. North-Holland, AmsterdamzbMATHGoogle Scholar
  40. 40.
    Schmid U, Kitzelmann E (2011) Inductive rule learning on the knowledge level. Cognitive Syst Res 12(3):237–248CrossRefGoogle Scholar
  41. 41.
    Simon H, Wallach D (1999) Cognitive modeling in perspective. Kognitionswissenschaft 8:1–4CrossRefGoogle Scholar
  42. 42.
    Spohn W (2012) The laws of belief: Ranking theory and its philosophical applications. Oxford University PressGoogle Scholar
  43. 43.
    Stenning K, Lambalgen M (2008) Human reasoning and cognitive science. Bradford Books. MIT Press, CambridgeGoogle Scholar
  44. 44.
    Steyvers M, Tenenbaum JB, Wagenmakers EJ, Blum B (2003) Inferring causal networks from observations and interventions. Cognitive Sci 27(3):453–489CrossRefGoogle Scholar
  45. 45.
    Störing G (1908) Experimentelle Untersuchungen über einfache Schlussprozesse. W. EngelmannGoogle Scholar
  46. 46.
    Strube G (2000) Generative theories in cognitive psychology. Theory Psychol 10(1):117–125CrossRefGoogle Scholar
  47. 47.
    Strube G, Ferstl E, Konieczny L, Ragni M (2013) Kognition. In: Görz G, Schneeberger J, Schmid U (eds) Handbuch der Künstlichen Intelligenz. Oldenbourg, MünchenGoogle Scholar
  48. 48.
    Suchanek FM, Kasneci G, Weikum G (2008) Yago: A large ontology from Wikipedia and WordNet. Web Semant Sci Serv Agents World Wide Web 6(3):203–217CrossRefGoogle Scholar
  49. 49.
    Sun R (2001) Duality of the mind—a bottom-up approach toward cognition. Lawrence ErlbaumGoogle Scholar
  50. 50.
    Tenenbaum JB, Griffiths TL, Kemp C (2006) Theory-based Bayesian models of inductive learning and reasoning. Trends Cognitive Sci 10:309–318CrossRefGoogle Scholar
  51. 51.
    Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to Grow a Mind: Statistics, Structure, and Abstraction. Science 331(6022):1279–1285MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Wang P (2013) Non-Axiomatic Logic: a model of intelligent reasoning. World Scientific Publishing CoGoogle Scholar
  53. 53.
    Wason PC (1968) Reasoning about a rule. Quart J Exp Psychol 20(3):273–281CrossRefGoogle Scholar
  54. 54.
    Xu F, Tenenbaum JB (2007) Word learning as Bayesian inference. Psychol Rev 114(2):245–272CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Research Group on the Foundations of Artificial Intelligence, Institute for InformatikAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  2. 2.Automation and Computer Sciences DepartmentHarz University of Applied SciencesWernigerodeGermany

Personalised recommendations