Skip to main content

TRADR Project: Long-Term Human-Robot Teaming for Robot Assisted Disaster Response


This paper describes the project TRADR: Long-Term Human-Robot Teaming for Robot Assisted Disaster Response. Experience shows that any incident serious enough to require robot involvement will most likely involve a sequence of sorties over several hours, days and even months. TRADR focuses on the challenges that thus arise for the persistence of environment models, multi-robot action models, and human-robot teaming, in order to allow incremental capability improvement over the duration of a mission. TRADR applies a user centric design approach to disaster response robotics, with use cases involving the response to a medium to large scale industrial accident by teams consisting of human rescuers and several robots (both ground and airborne). This paper describes the fundamentals of the project: the motivation, objectives and approach in contrast to related work.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Cf. the authors’ list for full names of the institutes listed here only by an abbreviation. For more information on the partners, please visit the project website:


  1. Achtelik M, Bachrach A, He R, Prentice S, Roy N (2009) Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: SPIE Defense, Security, and Sensing, vol 7332. International society for optics and Photonics, p 733219

  2. Anderson D, Howard T, Apfelbaum D, Herman H, Kelly A (2009) Coordinated control and range imaging for mobile manipulation. In: Experimental robotics. Springer, pp 547–556

  3. Atherton J, Goodrich M (2009) Supporting remote manipulation with an ecological augmented virtuality interface. In: Artificial intelligence and simulation of behaviour (AISB) on New Frontiers in Human-Robot Interaction, Edinburgh, UK

  4. Brenner M, Nebel B (2009) Continual planning and acting in dynamic multiagent environments. Auton Agent Multi-Agent Syst 19(3):297–331

    Article  Google Scholar 

  5. Burgard W, Moors M, Stachniss C, Schneider FE (2005) Coordinated multi-robot exploration. IEEE Trans Robot 21(3):376–386

    Article  Google Scholar 

  6. Cantelli L, Mangiameli M, Melita CD, Muscato G (2013) UAV/UGV cooperation for surveying operations in humanitarian demining. In: Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International symposium on 21–26 Oct 2013, Linköping. IEEE, pp 1–6

  7. Chrobocinski P, Zotos N, Makri E, Stergiopoulos C, Bogdos G (2012) DARIUS project: Deployable SAR integrated chain with unmanned systems. In: Telecommunications and Multimedia (TEMU), 2012 International conference on 30 Jul–1 Aug 2012, Chania. IEEE, pp 220–226

  8. Colas F, Mahesh S, Pomerleau F, Liu M, Siegwart R (2013) 3D path planning and execution for search and rescue ground robots. In: Intelligent robots and systems (IROS), 2013 IEEE/RSJ international conference on 3–7 Nov 2013, Tokyo. IEEE, pp 722–727

  9. De Cubber G, Doroftei D, Serrano D, Chintamani K, Sabino R, Ourevitch S (2013) The EU-ICARUS project: developing assistive robotic tools for search and rescue operations. In: Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE international symposium on 21–26 Oct 2013, Linköping. IEEE, pp 1–4

  10. Duckett T, Hanheide M, Krajnik T, Fentanes JP, Dondrup C (2014) Spatio-temporal representations for cognitive control in long-term scenarios. In: AAAI spring symposium on qualitative representations for robots, 27–28 March 2014, Stirling, Scotland, UK

  11. Duncan B, Ulam P, Arkin R (2009) Lek behavior as a model for multi-robot systems. In: Robotics and biomimetics (ROBIO), 2009 IEEE International Conference on 19–23 Dec 2009, Guilin. IEEE, pp 25–32

  12. Fincannon T, Barnes LE, Murphy RR, Riddle DL (2004) Evidence of the need for social intelligence in rescue robots. In: IEEE/RSJ International conference on intelligent robots and systems (IROS), vol 2. IEEE, pp 1089–1095

  13. Finzi A., Pirri F (2005) Representing flexible temporal behaviors in the situation calculus. In: Proceedings of the 19th international joint conference on Artificial intelligence, pp 436–441

  14. FIPA: FIPA ACL message structure specification (2002). url:

  15. Gerkey BP, Mataric MJ (2000) Murdoch: Publish/subscribe task allocation for heterogeneous agents. In: AAAI/IAAI, p 1070

  16. Gerkey BP, Mataric MJ (2003) Multi-robot task allocation: analyzing the complexity and optimality of key architectures. In: IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 3862–3868

  17. Gianni M, Kruijff GJM, Pirri F (2014) A stimulus-response framework for robot control. ACM Trans Interact Intell Syst 4(4)

  18. Hindriks KV (2009) Programming rational agents in GOAL. In: A.E. Seghrouchni, J. Dix, M. Dastani, R.H. Bordini (ed.) Multi-agent programming: languages, tools and applications. Springer, pp 119–157

  19. Hoffman G, Breazeal C (2004) Collaboration in human-robot teams. In: Proceedings of the AIAA 1st intelligent systems technical conference, Chicago, IL, USA

  20. Koenig S, Likhachev M (2005) Fast replanning for navigation in unknown terrain. IEEE Trans Robot 16(3):354–363

    Article  Google Scholar 

  21. Kruijff G, Colas F, Svoboda T, van Diggelen J, Balmer P, Pirri F, Worst R (2012) Designing intelligent robots for human-robot teaming in urban search & rescue. In: Proceedings of the AAAI 2012 spring symposium on designing intelligent robots

  22. Kruijff G, Tretyakov V, Linder T, Pirri F, Gianni M, Papadakis P, Pizzoli M, Sinha AEP, Corrao S, Priori F, Febrini S, Angeletti S (2012) Rescue robots at earthquake-hit Mirandola, Italy. In: Proceedings of the 10th IEEE international symposium on safety, security, and rescue robotics (SSRR-2012). IEEE Press, USA, p 5–8

  23. Kubelka V, Oswald L, Pomerleau F, Colas F, Svoboda T, Reinstein M (2014) Robust data fusion of multi-modal sensory information for mobile robots. J Field Robot. doi: 10.1002/rob.21535

  24. Lerman K, Jones C, Galstyan A, Mataric MJ (2006) Analysis of dynamic task allocation in multi-robot systems. Int J Robot Res 25(3):225–241

    Article  Google Scholar 

  25. Lupashin S, Schoellig A., Sherback M, D’Andrea R (2010) A simple learning strategy for high-speed quadrocopter multi-flips. In: IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2010 IEEE international conference on 3–7 May 2010. IEEE, pp 1642–1648

  26. Marconi L, Leutenegger S, Lynen S, Burri M, Naldi R, Melchiorri C (2013) Ground and aerial robots as an aid to alpine search and rescue: Initial sherpa outcomes. In: Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE international symposium on 21–26 Oct 2013, Linköping. IEEE, pp 1–2

  27. Michael N, Fink J, Kumar V (2010) Cooperative manipulation and transportation with aerial robots. Auton Rob 30(1):73–86

  28. Murphy RR (2004) Human-robot interaction in rescue robotics. IEEE Trans Syst Man Cybern C Appl Rev 34(2):138–153

    Article  Google Scholar 

  29. Nair R, Tambe M, Marsella S (2003) Role allocation and reallocation in multiagent teams: towards a practical analysis. In: Proceedings of the second international joint conference on Autonomous agents and multiagent systems, AAMAS ’03ACM, New York, USA, pp 552–559

  30. Ögren P, Svenmarck P, Lif P, Norberg M, Söderbäck, N (2014) Design and implementation of a new teleoperation control mode for differential drive UGVs. J Auton Robot 71–79

  31. Okada Y, Nagatani K, Yoshida K, Tadokoro S, Yoshida T, Koyanagi E (2011) Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning. J Field Rob 26(6):875–893

    Article  Google Scholar 

  32. Ososky S, Schuster D, Jentsch F, Fiore S, Shumaker R, Lebiere C, Kurup U, Oh J, Stentz A (2012) The importance of shared mental models and shared situation awareness for transforming robots from tools to teammates. In: Proceedings of SPIE 8387, Unmanned Systems Technology XIV, 838710–1

  33. Pirri F (2011) The well-designed logical robot: learning and experience from observations to the situation calculus. Artif Intell 175(1):378–415

    Article  MATH  MathSciNet  Google Scholar 

  34. Pomerleau F, Krüsi P, Colas F, Furgale P, Siegwart R (2014) Long-term 3D map maintenance in dynamic environments. In: IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 3712–3719

  35. Rufli M, Ferguson D, Siegwart R (2009) Smooth path planning in constrained environments. In: IEEE International conference on robotics and automation (ICRA). IEEE, pp 3780–3785

  36. Salmon PM, Stanton NA, Walker GH, Jenkins PD (2009) Distributed situation awareness: theory, measurement, and application to teamwork. Ashgate, UK

    Google Scholar 

  37. Stückler J, Behnke S (2014) Multi-resolution surfel maps for efficient dense 3D modeling and tracking. J Vis Commun Image Represent 25(1):137–147

  38. Van Velsen L, Van Der Geest T, Klaassen R, Steehouder M (2008) User-centered evaluation of adaptive and adaptable systems: a literature review. Knowl Eng Rev 23(03):261–281

    Google Scholar 

  39. Vig L, Adams JA.(2005) A framework for multi-robot coalition formation. In: IICAI, pp 347–363

  40. Wang X, Zhang D, Gu T, Pung H (2004) Ontology based context modeling and reasoning using owl. In: Pervasive computing and communications Workshops, 2004, Proceedings of the second IEEE annual conference on 14–17 Mar 2004. IEEE, pp 18–22

  41. Weiss S, Achtelik MW, Lynen S, Chli M, Siegwart R (2012) Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments. In: IEEE international conference on robotics and automation (ICRA), IEEE, pp 957–964

  42. Hornung A, Wurm K, Bennewitz M, Stachniss C, Burgard W (2013) OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton Robot 34(3):189–206

  43. Xiong L, Chen X, Huang TK, Schneider JG, Carbonell JG (2010) Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: SDM, pp 211–222

  44. Zimmermann K, Zuzánek P, Reinstein M, Hlaváč V (2014) Adaptive traversability of unknown complex terrain with obstacles for mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, USA, pp 5177–5182

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ivana Kruijff-Korbayová.

Additional information

TRADR is an EU-funded Integrated Project in the FP7 ICT Programme, grant no. 609763, Nov. 2013–Dec. 2017. URL:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kruijff-Korbayová, I., Colas, F., Gianni, M. et al. TRADR Project: Long-Term Human-Robot Teaming for Robot Assisted Disaster Response. Künstl Intell 29, 193–201 (2015).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Disaster response robotics
  • Persistent environment models
  • Persistent multi-robot action models
  • Persistent multi-robot collaboration models
  • Persistent human-robot teaming
  • User-centric design