KI - Künstliche Intelligenz

, Volume 29, Issue 2, pp 193–201 | Cite as

TRADR Project: Long-Term Human-Robot Teaming for Robot Assisted Disaster Response

  • Ivana Kruijff-Korbayová
  • Francis Colas
  • Mario Gianni
  • Fiora Pirri
  • Joachim de Greeff
  • Koen Hindriks
  • Mark Neerincx
  • Petter Ögren
  • Tomáš Svoboda
  • Rainer Worst
Research Project

Abstract

This paper describes the project TRADR: Long-Term Human-Robot Teaming for Robot Assisted Disaster Response. Experience shows that any incident serious enough to require robot involvement will most likely involve a sequence of sorties over several hours, days and even months. TRADR focuses on the challenges that thus arise for the persistence of environment models, multi-robot action models, and human-robot teaming, in order to allow incremental capability improvement over the duration of a mission. TRADR applies a user centric design approach to disaster response robotics, with use cases involving the response to a medium to large scale industrial accident by teams consisting of human rescuers and several robots (both ground and airborne). This paper describes the fundamentals of the project: the motivation, objectives and approach in contrast to related work.

Keywords

Disaster response robotics Persistent environment models Persistent multi-robot action models Persistent multi-robot collaboration models Persistent human-robot teaming User-centric design 

References

  1. 1.
    Achtelik M, Bachrach A, He R, Prentice S, Roy N (2009) Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: SPIE Defense, Security, and Sensing, vol 7332. International society for optics and Photonics, p 733219Google Scholar
  2. 2.
    Anderson D, Howard T, Apfelbaum D, Herman H, Kelly A (2009) Coordinated control and range imaging for mobile manipulation. In: Experimental robotics. Springer, pp 547–556Google Scholar
  3. 3.
    Atherton J, Goodrich M (2009) Supporting remote manipulation with an ecological augmented virtuality interface. In: Artificial intelligence and simulation of behaviour (AISB) on New Frontiers in Human-Robot Interaction, Edinburgh, UKGoogle Scholar
  4. 4.
    Brenner M, Nebel B (2009) Continual planning and acting in dynamic multiagent environments. Auton Agent Multi-Agent Syst 19(3):297–331CrossRefGoogle Scholar
  5. 5.
    Burgard W, Moors M, Stachniss C, Schneider FE (2005) Coordinated multi-robot exploration. IEEE Trans Robot 21(3):376–386CrossRefGoogle Scholar
  6. 6.
    Cantelli L, Mangiameli M, Melita CD, Muscato G (2013) UAV/UGV cooperation for surveying operations in humanitarian demining. In: Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International symposium on 21–26 Oct 2013, Linköping. IEEE, pp 1–6Google Scholar
  7. 7.
    Chrobocinski P, Zotos N, Makri E, Stergiopoulos C, Bogdos G (2012) DARIUS project: Deployable SAR integrated chain with unmanned systems. In: Telecommunications and Multimedia (TEMU), 2012 International conference on 30 Jul–1 Aug 2012, Chania. IEEE, pp 220–226Google Scholar
  8. 8.
    Colas F, Mahesh S, Pomerleau F, Liu M, Siegwart R (2013) 3D path planning and execution for search and rescue ground robots. In: Intelligent robots and systems (IROS), 2013 IEEE/RSJ international conference on 3–7 Nov 2013, Tokyo. IEEE, pp 722–727Google Scholar
  9. 9.
    De Cubber G, Doroftei D, Serrano D, Chintamani K, Sabino R, Ourevitch S (2013) The EU-ICARUS project: developing assistive robotic tools for search and rescue operations. In: Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE international symposium on 21–26 Oct 2013, Linköping. IEEE, pp 1–4Google Scholar
  10. 10.
    Duckett T, Hanheide M, Krajnik T, Fentanes JP, Dondrup C (2014) Spatio-temporal representations for cognitive control in long-term scenarios. In: AAAI spring symposium on qualitative representations for robots, 27–28 March 2014, Stirling, Scotland, UKGoogle Scholar
  11. 11.
    Duncan B, Ulam P, Arkin R (2009) Lek behavior as a model for multi-robot systems. In: Robotics and biomimetics (ROBIO), 2009 IEEE International Conference on 19–23 Dec 2009, Guilin. IEEE, pp 25–32Google Scholar
  12. 12.
    Fincannon T, Barnes LE, Murphy RR, Riddle DL (2004) Evidence of the need for social intelligence in rescue robots. In: IEEE/RSJ International conference on intelligent robots and systems (IROS), vol 2. IEEE, pp 1089–1095Google Scholar
  13. 13.
    Finzi A., Pirri F (2005) Representing flexible temporal behaviors in the situation calculus. In: Proceedings of the 19th international joint conference on Artificial intelligence, pp 436–441Google Scholar
  14. 14.
    FIPA: FIPA ACL message structure specification (2002). url: http://www.fipa.org/specs/fipa00061
  15. 15.
    Gerkey BP, Mataric MJ (2000) Murdoch: Publish/subscribe task allocation for heterogeneous agents. In: AAAI/IAAI, p 1070Google Scholar
  16. 16.
    Gerkey BP, Mataric MJ (2003) Multi-robot task allocation: analyzing the complexity and optimality of key architectures. In: IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 3862–3868Google Scholar
  17. 17.
    Gianni M, Kruijff GJM, Pirri F (2014) A stimulus-response framework for robot control. ACM Trans Interact Intell Syst 4(4)Google Scholar
  18. 18.
    Hindriks KV (2009) Programming rational agents in GOAL. In: A.E. Seghrouchni, J. Dix, M. Dastani, R.H. Bordini (ed.) Multi-agent programming: languages, tools and applications. Springer, pp 119–157Google Scholar
  19. 19.
    Hoffman G, Breazeal C (2004) Collaboration in human-robot teams. In: Proceedings of the AIAA 1st intelligent systems technical conference, Chicago, IL, USAGoogle Scholar
  20. 20.
    Koenig S, Likhachev M (2005) Fast replanning for navigation in unknown terrain. IEEE Trans Robot 16(3):354–363CrossRefGoogle Scholar
  21. 21.
    Kruijff G, Colas F, Svoboda T, van Diggelen J, Balmer P, Pirri F, Worst R (2012) Designing intelligent robots for human-robot teaming in urban search & rescue. In: Proceedings of the AAAI 2012 spring symposium on designing intelligent robotsGoogle Scholar
  22. 22.
    Kruijff G, Tretyakov V, Linder T, Pirri F, Gianni M, Papadakis P, Pizzoli M, Sinha AEP, Corrao S, Priori F, Febrini S, Angeletti S (2012) Rescue robots at earthquake-hit Mirandola, Italy. In: Proceedings of the 10th IEEE international symposium on safety, security, and rescue robotics (SSRR-2012). IEEE Press, USA, p 5–8Google Scholar
  23. 23.
    Kubelka V, Oswald L, Pomerleau F, Colas F, Svoboda T, Reinstein M (2014) Robust data fusion of multi-modal sensory information for mobile robots. J Field Robot. doi: 10.1002/rob.21535
  24. 24.
    Lerman K, Jones C, Galstyan A, Mataric MJ (2006) Analysis of dynamic task allocation in multi-robot systems. Int J Robot Res 25(3):225–241CrossRefGoogle Scholar
  25. 25.
    Lupashin S, Schoellig A., Sherback M, D’Andrea R (2010) A simple learning strategy for high-speed quadrocopter multi-flips. In: IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2010 IEEE international conference on 3–7 May 2010. IEEE, pp 1642–1648Google Scholar
  26. 26.
    Marconi L, Leutenegger S, Lynen S, Burri M, Naldi R, Melchiorri C (2013) Ground and aerial robots as an aid to alpine search and rescue: Initial sherpa outcomes. In: Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE international symposium on 21–26 Oct 2013, Linköping. IEEE, pp 1–2Google Scholar
  27. 27.
    Michael N, Fink J, Kumar V (2010) Cooperative manipulation and transportation with aerial robots. Auton Rob 30(1):73–86Google Scholar
  28. 28.
    Murphy RR (2004) Human-robot interaction in rescue robotics. IEEE Trans Syst Man Cybern C Appl Rev 34(2):138–153CrossRefGoogle Scholar
  29. 29.
    Nair R, Tambe M, Marsella S (2003) Role allocation and reallocation in multiagent teams: towards a practical analysis. In: Proceedings of the second international joint conference on Autonomous agents and multiagent systems, AAMAS ’03ACM, New York, USA, pp 552–559Google Scholar
  30. 30.
    Ögren P, Svenmarck P, Lif P, Norberg M, Söderbäck, N (2014) Design and implementation of a new teleoperation control mode for differential drive UGVs. J Auton Robot 71–79Google Scholar
  31. 31.
    Okada Y, Nagatani K, Yoshida K, Tadokoro S, Yoshida T, Koyanagi E (2011) Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning. J Field Rob 26(6):875–893CrossRefGoogle Scholar
  32. 32.
    Ososky S, Schuster D, Jentsch F, Fiore S, Shumaker R, Lebiere C, Kurup U, Oh J, Stentz A (2012) The importance of shared mental models and shared situation awareness for transforming robots from tools to teammates. In: Proceedings of SPIE 8387, Unmanned Systems Technology XIV, 838710–1Google Scholar
  33. 33.
    Pirri F (2011) The well-designed logical robot: learning and experience from observations to the situation calculus. Artif Intell 175(1):378–415CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Pomerleau F, Krüsi P, Colas F, Furgale P, Siegwart R (2014) Long-term 3D map maintenance in dynamic environments. In: IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 3712–3719Google Scholar
  35. 35.
    Rufli M, Ferguson D, Siegwart R (2009) Smooth path planning in constrained environments. In: IEEE International conference on robotics and automation (ICRA). IEEE, pp 3780–3785Google Scholar
  36. 36.
    Salmon PM, Stanton NA, Walker GH, Jenkins PD (2009) Distributed situation awareness: theory, measurement, and application to teamwork. Ashgate, UKGoogle Scholar
  37. 37.
    Stückler J, Behnke S (2014) Multi-resolution surfel maps for efficient dense 3D modeling and tracking. J Vis Commun Image Represent 25(1):137–147Google Scholar
  38. 38.
    Van Velsen L, Van Der Geest T, Klaassen R, Steehouder M (2008) User-centered evaluation of adaptive and adaptable systems: a literature review. Knowl Eng Rev 23(03):261–281Google Scholar
  39. 39.
    Vig L, Adams JA.(2005) A framework for multi-robot coalition formation. In: IICAI, pp 347–363Google Scholar
  40. 40.
    Wang X, Zhang D, Gu T, Pung H (2004) Ontology based context modeling and reasoning using owl. In: Pervasive computing and communications Workshops, 2004, Proceedings of the second IEEE annual conference on 14–17 Mar 2004. IEEE, pp 18–22Google Scholar
  41. 41.
    Weiss S, Achtelik MW, Lynen S, Chli M, Siegwart R (2012) Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments. In: IEEE international conference on robotics and automation (ICRA), IEEE, pp 957–964Google Scholar
  42. 42.
    Hornung A, Wurm K, Bennewitz M, Stachniss C, Burgard W (2013) OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton Robot 34(3):189–206Google Scholar
  43. 43.
    Xiong L, Chen X, Huang TK, Schneider JG, Carbonell JG (2010) Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: SDM, pp 211–222Google Scholar
  44. 44.
    Zimmermann K, Zuzánek P, Reinstein M, Hlaváč V (2014) Adaptive traversability of unknown complex terrain with obstacles for mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, USA, pp 5177–5182CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ivana Kruijff-Korbayová
    • 1
  • Francis Colas
    • 2
  • Mario Gianni
    • 6
  • Fiora Pirri
    • 6
  • Joachim de Greeff
    • 3
  • Koen Hindriks
    • 3
  • Mark Neerincx
    • 4
  • Petter Ögren
    • 5
  • Tomáš Svoboda
    • 7
  • Rainer Worst
    • 8
  1. 1.Language Technology LabDeutsches Forschungszentrum für Künstliche Intelligenz (DFKI)SaarbrückenGermany
  2. 2.Eidgenössische Technische Hochschule Zürich (ETH)ZürichSwitzerland
  3. 3.Technische Universiteit Delft (TUD)Delft The Netherlands
  4. 4.Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO)SoesterbergThe Netherlands
  5. 5.Kungliga Tekniska Hoegskolan (KTH)StockholmSweden
  6. 6.Università degli Studi di Roma “La Sapienza” (ROMA)RomeItaly
  7. 7.Czech Technical University in Prague (CTU) PragueCzech Republic
  8. 8.Fraunhofer Institute for Intelligent Analysis and Information SystemsSankt AugustinGermany

Personalised recommendations