Space Robotics: An Overview of Challenges, Applications and Technologies

Abstract

While space exploration may be considered anything but dull, it certainly is very dangerous. Expanding our knowledge on the solar system to look for clues to such fundamental questions as the origins of life, or a sustained human presence on anything other than earth may well be worth the risk. The involved costs for mitigating the risk of human space flight are prohibitive. Robotic missions, like the hugely successful Mars Exploration Rovers, have shown that robotics as a sub-field of Artificial Intelligence can perform scientific exploration activities without human presence, and will play an even more prominent role in future mission scenarios. Worldwide technology research efforts are continuously expanding the capabilities of mobile robotic systems. This article provides an overview of the special conditions and examples of technological solutions for the development of space robots, as well as different fields of application.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abell PA, Korsmeyer DJ, Landis RR, Jones TD, Adamo DR, Morrison DD, Lemke LG, Gonzales AA, Gershman R, Sweetser TH, Johnson LL, Lu E (2009) Scientific exploration of near-earth objects via the orion crew exploration vehicle. Meteorit Planet Sci 44(12):1825–1836. doi:10.1111/j.1945-5100.2009.tb01991.x

    Article  Google Scholar 

  2. 2.

    Ai-Chang M, Bresina J, Charest L, Chase A, Hsu JJ, Jonsson A, Kanefsky B, Morris P, Yglesias J, Chafin B, Dias W, Maldague P (2004) MAPGEN: mixed-initiative planning and scheduling for the Mars exploration rover mission. IEEE Intell Syst 19(1):8–12. doi:10.1109/MIS.2004.1265878

    Article  Google Scholar 

  3. 3.

    Allen DW, Jones MC, McCue LS, Woolsey CA, Moore WB (2013) Mapping a mission profile for the exploration of Europa’s ocean. In: AIAA SPACE 2013 conference and exposition

  4. 4.

    Aziz S (2013) Development and verification of ground-based tele-robotics operations concept for Dextre. Acta Astronaut 86:1–9. doi:10.1016/j.actaastro.2011.11.004

    Article  Google Scholar 

  5. 5.

    Bajracharya M, Maimone M, Helmick D (2008) Autonomy for Mars rovers: past, present, and future. Computer 41(12):44–50. doi:10.1109/MC.2008.479

    Article  Google Scholar 

  6. 6.

    Ball A, Garry J, Lorenz R, Kerzhanovich V (2007) Planetary landers and entry probes. Cambridge University Press, Cambridge

    Google Scholar 

  7. 7.

    Bartsch S, Birnschein T, Römmermann M, Hilljegerdes J, Kühn D, Kirchner F (2008) Development of the six-legged walking and climbing robot SpaceClimber. J Field Robot 29:506–532. doi:10.1002/rob

    Google Scholar 

  8. 8.

    Barucci MA, Yoshikawa M, Michel P, Kawagushi J, Yano H, Brucato JR, Franchi IA, Dotto E, Fulchignoni M, Ulamec S (2008) MARCO POLO: near earth object sample return mission. Exp Astron 23(3):785–808. doi:10.1007/s10686-008-9087-8

    Article  Google Scholar 

  9. 9.

    Belo FA, Birk A, Brunskill C, Kirchner F, Lappas V, Remy CD, Roccella S, Rossi C, Tikanmäki A, Visentin G (2012) The ESA lunar robotics challenge: simulating operations at the lunar south pole. J Field Robot :1–26. doi:10.1002/rob

  10. 10.

    Berns K, Kuhnert KD, Armbrust C (2011) Off-road robotics—an overview. KI-Künstliche Intell. doi:10.1007/s13218-011-0100-4

  11. 11.

    Boge T, Ma O (2011) Using advanced industrial robotics for spacecraft rendezvous and docking simulation. In: 2011 IEEE international conference on robotics and automation, pp 1–4. IEEE. doi:10.1109/ICRA.2011.5980583

  12. 12.

    Bonin-Font F, Ortiz A, Oliver G (2008) Visual navigation for mobile robots: a survey. J Intell Robot Syst 53(3):263–296. doi:10.1007/s10846-008-9235-4

    Article  Google Scholar 

  13. 13.

    Boumans R, Heemskerk C (1998) The European robotic arm for the international space station. Robot Autono Syst 23(1–2):17–27. doi:10.1016/S0921-8890(97)00054-7

    Article  Google Scholar 

  14. 14.

    Burridge RR., Graham J, Shillcutt K, Hirsh R, Kortenkamp D (2003) Experiments with an EVA assistant robot. In: 7th international symposium on artificial intelligence, robotics and automation in space

  15. 15.

    Castano R, Estlin T, Anderson RC, Gaines DM, Castano A, Bornstein B, Chouinard C, Judd M (2007) Oasis: onboard autonomous science investigation system for opportunistic rover science. J Field Robot 24(5):379–397. doi:10.1002/rob.20192

    Article  Google Scholar 

  16. 16.

    Chien S, Doyle R, Davies A, Jonsson A, Lorenz R (2006) The future of AI in space. IEEE Intell Syst 21(4):64–69. doi:10.1109/MIS.2006.79

    Article  Google Scholar 

  17. 17.

    Crawford I, Anand M, Cockell C, Falcke H, Green D, Jaumann R, Wieczorek M (2012) Back to the moon: the scientific rationale for resuming lunar surface exploration. Planet Space Sci. doi:10.1016/j.pss.2012.06.002

  18. 18.

    Diftler M, Mehling J, Abdallah M, Radford N, Bridgwater L, Sanders A, Askew R, Linn D, Yamokoski J, Permenter F, Hargrave B, Platt R, Savely R, Ambrose R (2011) Robonaut 2—the first humanoid robot in space. In: 2011 IEEE international conference on robotics and automation, pp 2178–2183. IEEE. doi:10.1109/ICRA.2011.5979830

  19. 19.

    Dunbabin M, Corke P, Winstanley G, Roberts J (2006) Off-world robotic excavation for large-scale habitat construction and resource extraction. In: AAAI spring symposium: to boldly go where no human−robot team has gone before

  20. 20.

    Elvis M (2013) Prospecting asteroid resources. In: Badescu V (ed) Asteroids. Springer, Berlin, pp 81–129. doi:10.1007/978-3-642-39244-3_4

  21. 21.

    Flückiger L, Utz H (2014) Service oriented robotic architecture for space robotics: design, testing, and lessons learned. J Field Robot 31(1):176–191. doi:10.1002/rob.21485

    Article  Google Scholar 

  22. 22.

    Folgheraiter M, Jordan M, Straube S, Seeland A, Kim SK, Kirchner EA (2012) Measuring the improvement of the interaction comfort of a wearable exoskeleton. Int J Soc Robot 4(3):285–302. doi:10.1007/s12369-012-0147-x

    Article  Google Scholar 

  23. 23.

    Fong T, Abercromby A, Bualat MG, Deans MC, Hodges KV, Hurtado JM, Landis R, Lee P, Schreckenghost D (2010) Assessment of robotic recon for human exploration of the moon. Acta Astronaut 67(9–10):1176–1188. doi:10.1016/j.actaastro.2010.06.029

    Article  Google Scholar 

  24. 24.

    Fong T, Nourbakhsh I (2005) Interaction challenges in human–robot space exploration. Interactions 12(2):42–45

    Article  Google Scholar 

  25. 25.

    Fong T, Rochlis Zumbado J, Currie N, Mishkin A, Akin DL (2013) Space telerobotics: unique challenges to human–robot collaboration in space. Rev Hum Factors Ergon 9(1):6–56 (2013). doi:10.1177/1557234X13510679

    Google Scholar 

  26. 26.

    Goeller M, Oberlaender J, Uhl K, Roennau A, Dillmann R (2012) Modular robots for on-orbit satellite servicing. In: 2012 IEEE international conference on robotics and biomimetics (ROBIO), pp 2018–2023. IEEE. doi:10.1109/ROBIO.2012.6491265

  27. 27.

    Griffiths A, Coates A, Josset JL, Paar G, Hofmann B, Pullan D, Rüffer P, Sims M, Pillinger C (2005) The Beagle 2 stereo camera system. Planet Space Sci 53(14–15):1466–1482. doi:10.1016/j.pss.2005.07.007

    Article  Google Scholar 

  28. 28.

    Grotzinger JP (2014) Exploring martian habitability. Habitability, taphonomy, and the search for organic carbon on Mars. Introduction. Science 343(6169):386–387. doi:10.1126/science.1249944

    Article  Google Scholar 

  29. 29.

    Haarmann R, Jaumann R, Claasen F, Apfelbeck M, Klinkner S, Richter L, Schwendner J, Wolf M, Hofmann P (2012) Mobile payload element (MPE): concept study for a sample fetching rover for the Esa Lunar Lander Mission. Planet Space Sci 74(1):283–295

    Article  Google Scholar 

  30. 30.

    Harvey B (2007) Soviet and Russian Lunar exploration. Springer Praxis Books, Praxis, New York. doi:10.1007/978-0-387-73976-2

  31. 31.

    Hirzinger G, Brunner B, Dietrich J, Heindl J (1994) ROTEX—the first remotely controlled robot in space. In: Proceedings of the 1994 IEEE international conference on robotics and automation, pp 2604–2611. IEEE Comput Soc Press (1994). doi:10.1109/ROBOT.1994.351121

  32. 32.

    Hirzinger G, Landzettel K, Reintsema D, Preusche C, Albu-Schäffer A, Rebele B, Turk M (2005) Rokviss-robotics component verification on ISS. In: Proceedings of 8th international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS)

  33. 33.

    Howard T, Morfopoulos A (2012) Enabling continuous planetary rover navigation through FPGA stereo and visual odometry. In: IEEE aerospace conference (2012).

  34. 34.

    Ishigami G, Miwa A, Nagatani K, Yoshida K (2007) Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. J Field Robot 24(3):233–250. doi:10.1002/rob.20187

    Article  Google Scholar 

  35. 35.

    Johnson AE, Goldberg SB, Matthies LH (2008) Robust and efficient stereo feature tracking for visual odometry. In: 2008 IEEE international conference on robotics and automation, pp 39–46. IEEE. doi:10.1109/ROBOT.2008.4543184

  36. 36.

    Kapellos K, Joudrier L (2009) 3drov: a planetary rover design tool based on simsat v4. ESAW2009, ESA/ESOC, Darmstadt, Germany

  37. 37.

    Kaupisch T, Noelke D (2014) DLR SpaceBot Cup 2013—a space robotics competition. Künstliche Intelligenz

  38. 38.

    Kay L (2012) Technological innovation and prize incentives: the Google Lunar X prize and other aerospace competitions. Edward Elgar Publishing, Camberley

  39. 39.

    Khoshnevis B, Bodiford MP, Burks KH, Ethridge E, Tucker D, Kim W, Toutanji H, Fiske MR (2005) Lunar contour crafting—a novel technique for ISRU-based habitat development. In: American Institute of Aeronautics and Astronautics Conference, Reno, January, 2005

  40. 40.

    King D (2001) Space servicing: past, present and future. In: Proceedings of the 6th international symposium on artificial intelligence and robotics and automation in space: i-SAIRAS

  41. 41.

    King D, Ower C (2005) Orbital robotics evolution for new exploration enterprise. In: International symposium on artificial intelligence, robotics and automation in space

  42. 42.

    Kolawa E, Chen Y, Mojarradi MM, Weber CT, Hunter DJ (2013) A motor drive electronics assembly for Mars Curiosity Rover: an example of assembly qualification for extreme environments. In: IEEE reliability physics symposium (IRPS)

  43. 43.

    Krotkov E, Simmons R, Whittaker W (1995) Ambler: performance of a six-legged planetary rover. Acta Astronaut 35(1):75–81. doi:10.1016/0094-5765(94)00078-Z

    Article  Google Scholar 

  44. 44.

    Kucherenko V, Bogatchev A, van Winnendael M (2004) Chassis concepts for the ExoMars rover. In: 8th ESA workshop on advanced space technologies for robotics and automation (ASTRA)

  45. 45.

    Lafleur C (2010) Costs of US piloted programs. Space Rev. URL http://www.thespacereview.com/article/1579/1

  46. 46.

    Lakdawalla E (2014) China lands on the moon. Nat Geosci 7(2):81–81. doi:10.1038/ngeo2083

    Article  Google Scholar 

  47. 47.

    Leger P, Trebi-Ollennu A, Wright J, Maxwell S (2005) Mars exploration rover surface operations: driving spirit at gusev crater. IEEE conference on systems, man and cybernetics

  48. 48.

    Lii NY, Chen Z, Pleintinger B, Borst CH, Hirzinger G, Schiele A (2010) Toward understanding the effects of visual-and force-feedback on robotic hand grasping performance for space teleoperation. In: International conference on intelligent robots and systems

  49. 49.

    Maimone M, Biesiadecki J, Tunstel E, Cheng Y, Leger C (2006) Surface navigation and mobility intelligence on the Mars exploration rovers. Intell Space Robot

  50. 50.

    Maimone MW, Leger PC, Biesiadecki JJ (2007) Overview of the Mars Exploration Rovers autonomous mobility and vision capabilities. In: IEEE international conference on robotics and automation (ICRA) space robotics workshop

  51. 51.

    Mankins JC (2009) Technology readiness assessments: a retrospective. Acta Astronaut 65(9–10):1216–1223. doi:10.1016/j.actaastro.2009.03.058

    Article  Google Scholar 

  52. 52.

    Mars Exploration Rover Launches (2003) NASA Press Kit. http://www.jpl.nasa.gov/news/press_kits/merlaunch.pdf

  53. 53.

    Matthies L, Maimone M, Johnson A, Cheng Y, Willson R, Villalpando C, Goldberg S, Huertas A, Stein A, Angelova A (2007) Computer vision on Mars. Int J Comput Vis 75(1):67–92. doi:10.1007/s11263-007-0046-z

    Article  Google Scholar 

  54. 54.

    Mehling JS, Strawser P, Bridgwater L, Verdeyen WK, Rovekamp R (2007) Centaur: NASA’s mobile humanoid designed for field work. In: Proceedings 2007 IEEE international conference on robotics and automation, pp 2928–2933. IEEE. doi:10.1109/ROBOT.2007.363916

  55. 55.

    Mishkin A, Morrison J, Nguyen T, Stone H, Cooper B, Wilcox B (1998) Experiences with operations and autonomy of the Mars pathfinder microrover. In: 1998 IEEE aerospace conference proceedings (Cat. No.98TH8339), vol 2, pp 337–351. IEEE. doi:10.1109/AERO.1998.687920

  56. 56.

    Mueller RP, Van Susante PJ (2011) A review of lunar regolith excavation robotic device prototypes. AIAA SPACE 2011 conference and exposition

  57. 57.

    Nguyen LA, Bualat M, Edwards LJ, Flueckiger L, Neveu C, Schwehr K, Wagner MD, Zbinden E (2001) Virtual reality interfaces for visualization and control of remote vehicles. Auton Robot 11(1):59–68. doi:10.1023/A:1011208212722

    Article  MATH  Google Scholar 

  58. 58.

    Nishida SI, Kawamoto S (2011) Strategy for capturing of a tumbling space debris. Acta Astronaut 68(1–2):113–120. http://dx.doi.org/10.1016/j.actaastro.2010.06.045

    Google Scholar 

  59. 59.

    Orgel C, Kereszturi A, Váczi T, Groemer G, Sattler B (2014) Scientific results and lessons learned from an integrated crewed Mars exploration simulation at the Rio Tinto Mars analogue site. Acta Astronaut 94(2):736–748. doi:10.1016/j.actaastro.2013.09.014

    Article  Google Scholar 

  60. 60.

    Parker CAC (2006) Collective robotic site preparation. Adapt Behav 14(1):5–19. doi:10.1177/105971230601400101

    Article  Google Scholar 

  61. 61.

    Pinard D, Reynaud S, Delpy P, Strandmoe SE (2007) Accurate and autonomous navigation for the ATV. Aerosp Sci Technol 11(6):490–498

    Article  Google Scholar 

  62. 62.

    Rank P, Mühlbauer Q, Naumann W, Landzettel K (2011) The DEOS automation and robotics payload. In: Proceedings of the symposium on advanced space technologies in robotics and automation (ASTRA)

  63. 63.

    Ravindran R, Doetsch KH (1982) Design aspects of the shuttle remote manipulator control. In: Proceedings of the guidance and control conference

  64. 64.

    Robinson M, Ashley J, Boyd A, Wagner R, Speyerer E, Ray Hawke B, Hiesinger H, van der Bogert C (2012) Confirmation of sublunarean voids and thin layering in mare deposits. Planet Space Sci 69(1):18–27. doi:10.1016/j.pss.2012.05.008

    Article  Google Scholar 

  65. 65.

    Roehr T, Cordes F, Kirchner F (2014) Reconfigurable integrated multirobot exploration system (RIMRES): heterogeneous modular reconfigurable robots for space exploration. J Field Robot

  66. 66.

    Rossmann J, Schluse M (2011) Virtual robotic testbeds: a foundation for e-Robotics in space, in industry—and in the woods. In: 2011 developments in E-systems engineering, pp 496–501. IEEE. doi:10.1109/DeSE.2011.101

  67. 67.

    Schäfer B, Gibbesch A, Krenn R, Rebele B (2010) Planetary rover mobility simulation on soft and uneven terrain. Veh Syst Dyn 48(1):149–169. doi:10.1080/00423110903243224

    Article  Google Scholar 

  68. 68.

    Schiele A, Hirzinger G (2011) A new generation of ergonomic exoskeletons—the high-performance X-Arm-2 for space robotics telepresence. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 2158–2165. IEEE. doi:10.1109/IROS.2011.6094868

  69. 69.

    Sellner B, Heger F, Hiatt L, Simmons R, Singh S (2006) Coordinated multiagent teams and sliding autonomy for large-scale assembly. Proc IEEE 94(7):1425–1444. doi:10.1109/JPROC.2006.876966

    Article  Google Scholar 

  70. 70.

    Simmons R, Singh S, Heger F, Hiatt L, Koterba S, Melchior N, Sellner B (2007) Human–robot teams for large-scale assembly. In: Proceedings of the NASA science technology conference

  71. 71.

    Srour J, McGarrity J (1988) Radiation effects on microelectronics in space. Proc IEEE 76(11):1443–1469. doi:10.1109/5.90114

    Article  Google Scholar 

  72. 72.

    Stelzer A, Hirschmüller H, Görner M (2012) Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. Int J Robot Res. doi:10.1177/0278364911435161

  73. 73.

    International Space Exploration Coordination Group (2013) The Global Exploration Roadmap http://www.nasa-usa.de/sites/default/files/files/GER-2013_Small.pdf

  74. 74.

    Thueer T, Krebs A, Siegwart R (2007) Performance comparison of rough-terrain robots—simulation and hardware. J Field Robot 24(3):251–271

    Article  Google Scholar 

  75. 75.

    Trainor J (1994) Instrument and spacecraft faults associated with nuclear radiation in space. Adv Space Res 14(10):685–693. doi:10.1016/0273-1177(94)90527-4

    Article  Google Scholar 

  76. 76.

    Weiss P, Gardette B, Chirié B, Collina-Girard J, Delauze H (2012) Simulation and preparation of surface EVA in reduced gravity at the Marseilles Bay subsea analogue sites. Planet Space Sci 74(1):121–134. doi:10.1016/j.pss.2012.06.022

    Article  Google Scholar 

  77. 77.

    Wettergreen D, Cabrol N, Baskaran V, Heys S, Jonak D, Pane D, Smith T, Teza J, Tompkins P, Villa D, Williams C, Wagner M (2005) Second experiments in the robotic investigation of life in the Atacama desert of chile. In: Proceedings 8th international symposium on artificial intelligence, robotics and automation in space, September, 2005

  78. 78.

    Wilcox BH, Litwin T, Biesiadecki J, Matthews J, Heverly M, Morrison J, Townsend J, Ahmad N, Sirota A, Cooper B (2007) Athlete: a cargo handling and manipulation robot for the moon. J Field Robot 24(5):421–434. doi:10.1002/rob.20193

    Article  Google Scholar 

  79. 79.

    Woods M, Shaw A, Barnes D, Price D, Long D, Pullan D (2009) Autonomous science for an ExoMars rover-like mission. J Field Robot 26(4):358–390. doi:10.1002/rob.20289

    Article  Google Scholar 

  80. 80.

    Yoshimitsu T, Kubota T, Nakatani I, Adachi T, Saito H (2003) Micro-hopping robot for asteroid exploration. Acta Astronaut 52(2–6):441–446. doi:10.1016/S0094-5765(02)00186-8

    Article  Google Scholar 

  81. 81.

    Zhao J, Huang J, Qiao L, Xiao Z (2014) Geologic characteristics of the Chang’E-3 exploration region. Science China Physics, Mechanics and Astronomy

    Google Scholar 

  82. 82.

    Zhou F, Arvidson RE, Bennett K, Trease B, Lindemann R, Bellutta P, Iagnemma K, Senatore C (2014) Simulations of Mars rover traverses. J Field Robot 31(1):141–160. doi:10.1002/rob.21483

    Article  Google Scholar 

  83. 83.

    Zimmerman W, Bonitz R, Feldman J (2001) Cryobot: an ice penetrating robotic vehicle for Mars and Europa. In: 2001 IEEE aerospace conference proceedings, vol 1, pp 1/311–1/323. IEEE. doi:10.1109/AERO.2001.931722

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jakob Schwendner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schwendner, J., Kirchner, F. Space Robotics: An Overview of Challenges, Applications and Technologies. Künstl Intell 28, 71–76 (2014). https://doi.org/10.1007/s13218-014-0292-5

Download citation

Keywords

  • International Space Station
  • Lunar Regolith
  • Space Robot
  • Exploration Mission
  • Mars Exploration Rover