KI - Künstliche Intelligenz

, Volume 28, Issue 2, pp 71–76 | Cite as

Space Robotics: An Overview of Challenges, Applications and Technologies

  • Jakob SchwendnerEmail author
  • Frank Kirchner
Technical Contribution


While space exploration may be considered anything but dull, it certainly is very dangerous. Expanding our knowledge on the solar system to look for clues to such fundamental questions as the origins of life, or a sustained human presence on anything other than earth may well be worth the risk. The involved costs for mitigating the risk of human space flight are prohibitive. Robotic missions, like the hugely successful Mars Exploration Rovers, have shown that robotics as a sub-field of Artificial Intelligence can perform scientific exploration activities without human presence, and will play an even more prominent role in future mission scenarios. Worldwide technology research efforts are continuously expanding the capabilities of mobile robotic systems. This article provides an overview of the special conditions and examples of technological solutions for the development of space robots, as well as different fields of application.


International Space Station Lunar Regolith Space Robot Exploration Mission Mars Exploration Rover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abell PA, Korsmeyer DJ, Landis RR, Jones TD, Adamo DR, Morrison DD, Lemke LG, Gonzales AA, Gershman R, Sweetser TH, Johnson LL, Lu E (2009) Scientific exploration of near-earth objects via the orion crew exploration vehicle. Meteorit Planet Sci 44(12):1825–1836. doi: 10.1111/j.1945-5100.2009.tb01991.x CrossRefGoogle Scholar
  2. 2.
    Ai-Chang M, Bresina J, Charest L, Chase A, Hsu JJ, Jonsson A, Kanefsky B, Morris P, Yglesias J, Chafin B, Dias W, Maldague P (2004) MAPGEN: mixed-initiative planning and scheduling for the Mars exploration rover mission. IEEE Intell Syst 19(1):8–12. doi: 10.1109/MIS.2004.1265878 CrossRefGoogle Scholar
  3. 3.
    Allen DW, Jones MC, McCue LS, Woolsey CA, Moore WB (2013) Mapping a mission profile for the exploration of Europa’s ocean. In: AIAA SPACE 2013 conference and expositionGoogle Scholar
  4. 4.
    Aziz S (2013) Development and verification of ground-based tele-robotics operations concept for Dextre. Acta Astronaut 86:1–9. doi: 10.1016/j.actaastro.2011.11.004 CrossRefGoogle Scholar
  5. 5.
    Bajracharya M, Maimone M, Helmick D (2008) Autonomy for Mars rovers: past, present, and future. Computer 41(12):44–50. doi: 10.1109/MC.2008.479 CrossRefGoogle Scholar
  6. 6.
    Ball A, Garry J, Lorenz R, Kerzhanovich V (2007) Planetary landers and entry probes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. 7.
    Bartsch S, Birnschein T, Römmermann M, Hilljegerdes J, Kühn D, Kirchner F (2008) Development of the six-legged walking and climbing robot SpaceClimber. J Field Robot 29:506–532. doi: 10.1002/rob Google Scholar
  8. 8.
    Barucci MA, Yoshikawa M, Michel P, Kawagushi J, Yano H, Brucato JR, Franchi IA, Dotto E, Fulchignoni M, Ulamec S (2008) MARCO POLO: near earth object sample return mission. Exp Astron 23(3):785–808. doi: 10.1007/s10686-008-9087-8 CrossRefGoogle Scholar
  9. 9.
    Belo FA, Birk A, Brunskill C, Kirchner F, Lappas V, Remy CD, Roccella S, Rossi C, Tikanmäki A, Visentin G (2012) The ESA lunar robotics challenge: simulating operations at the lunar south pole. J Field Robot :1–26. doi: 10.1002/rob
  10. 10.
    Berns K, Kuhnert KD, Armbrust C (2011) Off-road robotics—an overview. KI-Künstliche Intell. doi: 10.1007/s13218-011-0100-4
  11. 11.
    Boge T, Ma O (2011) Using advanced industrial robotics for spacecraft rendezvous and docking simulation. In: 2011 IEEE international conference on robotics and automation, pp 1–4. IEEE. doi: 10.1109/ICRA.2011.5980583
  12. 12.
    Bonin-Font F, Ortiz A, Oliver G (2008) Visual navigation for mobile robots: a survey. J Intell Robot Syst 53(3):263–296. doi: 10.1007/s10846-008-9235-4 CrossRefGoogle Scholar
  13. 13.
    Boumans R, Heemskerk C (1998) The European robotic arm for the international space station. Robot Autono Syst 23(1–2):17–27. doi: 10.1016/S0921-8890(97)00054-7 CrossRefGoogle Scholar
  14. 14.
    Burridge RR., Graham J, Shillcutt K, Hirsh R, Kortenkamp D (2003) Experiments with an EVA assistant robot. In: 7th international symposium on artificial intelligence, robotics and automation in spaceGoogle Scholar
  15. 15.
    Castano R, Estlin T, Anderson RC, Gaines DM, Castano A, Bornstein B, Chouinard C, Judd M (2007) Oasis: onboard autonomous science investigation system for opportunistic rover science. J Field Robot 24(5):379–397. doi: 10.1002/rob.20192 CrossRefGoogle Scholar
  16. 16.
    Chien S, Doyle R, Davies A, Jonsson A, Lorenz R (2006) The future of AI in space. IEEE Intell Syst 21(4):64–69. doi: 10.1109/MIS.2006.79 CrossRefGoogle Scholar
  17. 17.
    Crawford I, Anand M, Cockell C, Falcke H, Green D, Jaumann R, Wieczorek M (2012) Back to the moon: the scientific rationale for resuming lunar surface exploration. Planet Space Sci. doi: 10.1016/j.pss.2012.06.002
  18. 18.
    Diftler M, Mehling J, Abdallah M, Radford N, Bridgwater L, Sanders A, Askew R, Linn D, Yamokoski J, Permenter F, Hargrave B, Platt R, Savely R, Ambrose R (2011) Robonaut 2—the first humanoid robot in space. In: 2011 IEEE international conference on robotics and automation, pp 2178–2183. IEEE. doi: 10.1109/ICRA.2011.5979830
  19. 19.
    Dunbabin M, Corke P, Winstanley G, Roberts J (2006) Off-world robotic excavation for large-scale habitat construction and resource extraction. In: AAAI spring symposium: to boldly go where no human−robot team has gone beforeGoogle Scholar
  20. 20.
    Elvis M (2013) Prospecting asteroid resources. In: Badescu V (ed) Asteroids. Springer, Berlin, pp 81–129. doi: 10.1007/978-3-642-39244-3_4
  21. 21.
    Flückiger L, Utz H (2014) Service oriented robotic architecture for space robotics: design, testing, and lessons learned. J Field Robot 31(1):176–191. doi: 10.1002/rob.21485 CrossRefGoogle Scholar
  22. 22.
    Folgheraiter M, Jordan M, Straube S, Seeland A, Kim SK, Kirchner EA (2012) Measuring the improvement of the interaction comfort of a wearable exoskeleton. Int J Soc Robot 4(3):285–302. doi: 10.1007/s12369-012-0147-x CrossRefGoogle Scholar
  23. 23.
    Fong T, Abercromby A, Bualat MG, Deans MC, Hodges KV, Hurtado JM, Landis R, Lee P, Schreckenghost D (2010) Assessment of robotic recon for human exploration of the moon. Acta Astronaut 67(9–10):1176–1188. doi: 10.1016/j.actaastro.2010.06.029 CrossRefGoogle Scholar
  24. 24.
    Fong T, Nourbakhsh I (2005) Interaction challenges in human–robot space exploration. Interactions 12(2):42–45CrossRefGoogle Scholar
  25. 25.
    Fong T, Rochlis Zumbado J, Currie N, Mishkin A, Akin DL (2013) Space telerobotics: unique challenges to human–robot collaboration in space. Rev Hum Factors Ergon 9(1):6–56 (2013). doi: 10.1177/1557234X13510679 Google Scholar
  26. 26.
    Goeller M, Oberlaender J, Uhl K, Roennau A, Dillmann R (2012) Modular robots for on-orbit satellite servicing. In: 2012 IEEE international conference on robotics and biomimetics (ROBIO), pp 2018–2023. IEEE. doi: 10.1109/ROBIO.2012.6491265
  27. 27.
    Griffiths A, Coates A, Josset JL, Paar G, Hofmann B, Pullan D, Rüffer P, Sims M, Pillinger C (2005) The Beagle 2 stereo camera system. Planet Space Sci 53(14–15):1466–1482. doi: 10.1016/j.pss.2005.07.007 CrossRefGoogle Scholar
  28. 28.
    Grotzinger JP (2014) Exploring martian habitability. Habitability, taphonomy, and the search for organic carbon on Mars. Introduction. Science 343(6169):386–387. doi: 10.1126/science.1249944 CrossRefGoogle Scholar
  29. 29.
    Haarmann R, Jaumann R, Claasen F, Apfelbeck M, Klinkner S, Richter L, Schwendner J, Wolf M, Hofmann P (2012) Mobile payload element (MPE): concept study for a sample fetching rover for the Esa Lunar Lander Mission. Planet Space Sci 74(1):283–295CrossRefGoogle Scholar
  30. 30.
    Harvey B (2007) Soviet and Russian Lunar exploration. Springer Praxis Books, Praxis, New York. doi: 10.1007/978-0-387-73976-2
  31. 31.
    Hirzinger G, Brunner B, Dietrich J, Heindl J (1994) ROTEX—the first remotely controlled robot in space. In: Proceedings of the 1994 IEEE international conference on robotics and automation, pp 2604–2611. IEEE Comput Soc Press (1994). doi: 10.1109/ROBOT.1994.351121
  32. 32.
    Hirzinger G, Landzettel K, Reintsema D, Preusche C, Albu-Schäffer A, Rebele B, Turk M (2005) Rokviss-robotics component verification on ISS. In: Proceedings of 8th international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS)Google Scholar
  33. 33.
    Howard T, Morfopoulos A (2012) Enabling continuous planetary rover navigation through FPGA stereo and visual odometry. In: IEEE aerospace conference (2012).Google Scholar
  34. 34.
    Ishigami G, Miwa A, Nagatani K, Yoshida K (2007) Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. J Field Robot 24(3):233–250. doi: 10.1002/rob.20187 CrossRefGoogle Scholar
  35. 35.
    Johnson AE, Goldberg SB, Matthies LH (2008) Robust and efficient stereo feature tracking for visual odometry. In: 2008 IEEE international conference on robotics and automation, pp 39–46. IEEE. doi: 10.1109/ROBOT.2008.4543184
  36. 36.
    Kapellos K, Joudrier L (2009) 3drov: a planetary rover design tool based on simsat v4. ESAW2009, ESA/ESOC, Darmstadt, GermanyGoogle Scholar
  37. 37.
    Kaupisch T, Noelke D (2014) DLR SpaceBot Cup 2013—a space robotics competition. Künstliche IntelligenzGoogle Scholar
  38. 38.
    Kay L (2012) Technological innovation and prize incentives: the Google Lunar X prize and other aerospace competitions. Edward Elgar Publishing, CamberleyGoogle Scholar
  39. 39.
    Khoshnevis B, Bodiford MP, Burks KH, Ethridge E, Tucker D, Kim W, Toutanji H, Fiske MR (2005) Lunar contour crafting—a novel technique for ISRU-based habitat development. In: American Institute of Aeronautics and Astronautics Conference, Reno, January, 2005Google Scholar
  40. 40.
    King D (2001) Space servicing: past, present and future. In: Proceedings of the 6th international symposium on artificial intelligence and robotics and automation in space: i-SAIRASGoogle Scholar
  41. 41.
    King D, Ower C (2005) Orbital robotics evolution for new exploration enterprise. In: International symposium on artificial intelligence, robotics and automation in spaceGoogle Scholar
  42. 42.
    Kolawa E, Chen Y, Mojarradi MM, Weber CT, Hunter DJ (2013) A motor drive electronics assembly for Mars Curiosity Rover: an example of assembly qualification for extreme environments. In: IEEE reliability physics symposium (IRPS)Google Scholar
  43. 43.
    Krotkov E, Simmons R, Whittaker W (1995) Ambler: performance of a six-legged planetary rover. Acta Astronaut 35(1):75–81. doi: 10.1016/0094-5765(94)00078-Z CrossRefGoogle Scholar
  44. 44.
    Kucherenko V, Bogatchev A, van Winnendael M (2004) Chassis concepts for the ExoMars rover. In: 8th ESA workshop on advanced space technologies for robotics and automation (ASTRA)Google Scholar
  45. 45.
    Lafleur C (2010) Costs of US piloted programs. Space Rev. URL
  46. 46.
    Lakdawalla E (2014) China lands on the moon. Nat Geosci 7(2):81–81. doi: 10.1038/ngeo2083 CrossRefGoogle Scholar
  47. 47.
    Leger P, Trebi-Ollennu A, Wright J, Maxwell S (2005) Mars exploration rover surface operations: driving spirit at gusev crater. IEEE conference on systems, man and cyberneticsGoogle Scholar
  48. 48.
    Lii NY, Chen Z, Pleintinger B, Borst CH, Hirzinger G, Schiele A (2010) Toward understanding the effects of visual-and force-feedback on robotic hand grasping performance for space teleoperation. In: International conference on intelligent robots and systemsGoogle Scholar
  49. 49.
    Maimone M, Biesiadecki J, Tunstel E, Cheng Y, Leger C (2006) Surface navigation and mobility intelligence on the Mars exploration rovers. Intell Space RobotGoogle Scholar
  50. 50.
    Maimone MW, Leger PC, Biesiadecki JJ (2007) Overview of the Mars Exploration Rovers autonomous mobility and vision capabilities. In: IEEE international conference on robotics and automation (ICRA) space robotics workshopGoogle Scholar
  51. 51.
    Mankins JC (2009) Technology readiness assessments: a retrospective. Acta Astronaut 65(9–10):1216–1223. doi: 10.1016/j.actaastro.2009.03.058 CrossRefGoogle Scholar
  52. 52.
    Mars Exploration Rover Launches (2003) NASA Press Kit.
  53. 53.
    Matthies L, Maimone M, Johnson A, Cheng Y, Willson R, Villalpando C, Goldberg S, Huertas A, Stein A, Angelova A (2007) Computer vision on Mars. Int J Comput Vis 75(1):67–92. doi: 10.1007/s11263-007-0046-z CrossRefGoogle Scholar
  54. 54.
    Mehling JS, Strawser P, Bridgwater L, Verdeyen WK, Rovekamp R (2007) Centaur: NASA’s mobile humanoid designed for field work. In: Proceedings 2007 IEEE international conference on robotics and automation, pp 2928–2933. IEEE. doi: 10.1109/ROBOT.2007.363916
  55. 55.
    Mishkin A, Morrison J, Nguyen T, Stone H, Cooper B, Wilcox B (1998) Experiences with operations and autonomy of the Mars pathfinder microrover. In: 1998 IEEE aerospace conference proceedings (Cat. No.98TH8339), vol 2, pp 337–351. IEEE. doi: 10.1109/AERO.1998.687920
  56. 56.
    Mueller RP, Van Susante PJ (2011) A review of lunar regolith excavation robotic device prototypes. AIAA SPACE 2011 conference and expositionGoogle Scholar
  57. 57.
    Nguyen LA, Bualat M, Edwards LJ, Flueckiger L, Neveu C, Schwehr K, Wagner MD, Zbinden E (2001) Virtual reality interfaces for visualization and control of remote vehicles. Auton Robot 11(1):59–68. doi: 10.1023/A:1011208212722 CrossRefzbMATHGoogle Scholar
  58. 58.
    Nishida SI, Kawamoto S (2011) Strategy for capturing of a tumbling space debris. Acta Astronaut 68(1–2):113–120. Google Scholar
  59. 59.
    Orgel C, Kereszturi A, Váczi T, Groemer G, Sattler B (2014) Scientific results and lessons learned from an integrated crewed Mars exploration simulation at the Rio Tinto Mars analogue site. Acta Astronaut 94(2):736–748. doi: 10.1016/j.actaastro.2013.09.014 CrossRefGoogle Scholar
  60. 60.
    Parker CAC (2006) Collective robotic site preparation. Adapt Behav 14(1):5–19. doi: 10.1177/105971230601400101 CrossRefGoogle Scholar
  61. 61.
    Pinard D, Reynaud S, Delpy P, Strandmoe SE (2007) Accurate and autonomous navigation for the ATV. Aerosp Sci Technol 11(6):490–498CrossRefGoogle Scholar
  62. 62.
    Rank P, Mühlbauer Q, Naumann W, Landzettel K (2011) The DEOS automation and robotics payload. In: Proceedings of the symposium on advanced space technologies in robotics and automation (ASTRA)Google Scholar
  63. 63.
    Ravindran R, Doetsch KH (1982) Design aspects of the shuttle remote manipulator control. In: Proceedings of the guidance and control conferenceGoogle Scholar
  64. 64.
    Robinson M, Ashley J, Boyd A, Wagner R, Speyerer E, Ray Hawke B, Hiesinger H, van der Bogert C (2012) Confirmation of sublunarean voids and thin layering in mare deposits. Planet Space Sci 69(1):18–27. doi: 10.1016/j.pss.2012.05.008 CrossRefGoogle Scholar
  65. 65.
    Roehr T, Cordes F, Kirchner F (2014) Reconfigurable integrated multirobot exploration system (RIMRES): heterogeneous modular reconfigurable robots for space exploration. J Field RobotGoogle Scholar
  66. 66.
    Rossmann J, Schluse M (2011) Virtual robotic testbeds: a foundation for e-Robotics in space, in industry—and in the woods. In: 2011 developments in E-systems engineering, pp 496–501. IEEE. doi: 10.1109/DeSE.2011.101
  67. 67.
    Schäfer B, Gibbesch A, Krenn R, Rebele B (2010) Planetary rover mobility simulation on soft and uneven terrain. Veh Syst Dyn 48(1):149–169. doi: 10.1080/00423110903243224 CrossRefGoogle Scholar
  68. 68.
    Schiele A, Hirzinger G (2011) A new generation of ergonomic exoskeletons—the high-performance X-Arm-2 for space robotics telepresence. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 2158–2165. IEEE. doi: 10.1109/IROS.2011.6094868
  69. 69.
    Sellner B, Heger F, Hiatt L, Simmons R, Singh S (2006) Coordinated multiagent teams and sliding autonomy for large-scale assembly. Proc IEEE 94(7):1425–1444. doi: 10.1109/JPROC.2006.876966 CrossRefGoogle Scholar
  70. 70.
    Simmons R, Singh S, Heger F, Hiatt L, Koterba S, Melchior N, Sellner B (2007) Human–robot teams for large-scale assembly. In: Proceedings of the NASA science technology conferenceGoogle Scholar
  71. 71.
    Srour J, McGarrity J (1988) Radiation effects on microelectronics in space. Proc IEEE 76(11):1443–1469. doi: 10.1109/5.90114 CrossRefGoogle Scholar
  72. 72.
    Stelzer A, Hirschmüller H, Görner M (2012) Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. Int J Robot Res. doi: 10.1177/0278364911435161
  73. 73.
    International Space Exploration Coordination Group (2013) The Global Exploration Roadmap
  74. 74.
    Thueer T, Krebs A, Siegwart R (2007) Performance comparison of rough-terrain robots—simulation and hardware. J Field Robot 24(3):251–271CrossRefGoogle Scholar
  75. 75.
    Trainor J (1994) Instrument and spacecraft faults associated with nuclear radiation in space. Adv Space Res 14(10):685–693. doi: 10.1016/0273-1177(94)90527-4 CrossRefGoogle Scholar
  76. 76.
    Weiss P, Gardette B, Chirié B, Collina-Girard J, Delauze H (2012) Simulation and preparation of surface EVA in reduced gravity at the Marseilles Bay subsea analogue sites. Planet Space Sci 74(1):121–134. doi: 10.1016/j.pss.2012.06.022 CrossRefGoogle Scholar
  77. 77.
    Wettergreen D, Cabrol N, Baskaran V, Heys S, Jonak D, Pane D, Smith T, Teza J, Tompkins P, Villa D, Williams C, Wagner M (2005) Second experiments in the robotic investigation of life in the Atacama desert of chile. In: Proceedings 8th international symposium on artificial intelligence, robotics and automation in space, September, 2005Google Scholar
  78. 78.
    Wilcox BH, Litwin T, Biesiadecki J, Matthews J, Heverly M, Morrison J, Townsend J, Ahmad N, Sirota A, Cooper B (2007) Athlete: a cargo handling and manipulation robot for the moon. J Field Robot 24(5):421–434. doi: 10.1002/rob.20193 CrossRefGoogle Scholar
  79. 79.
    Woods M, Shaw A, Barnes D, Price D, Long D, Pullan D (2009) Autonomous science for an ExoMars rover-like mission. J Field Robot 26(4):358–390. doi: 10.1002/rob.20289 CrossRefGoogle Scholar
  80. 80.
    Yoshimitsu T, Kubota T, Nakatani I, Adachi T, Saito H (2003) Micro-hopping robot for asteroid exploration. Acta Astronaut 52(2–6):441–446. doi: 10.1016/S0094-5765(02)00186-8 CrossRefGoogle Scholar
  81. 81.
    Zhao J, Huang J, Qiao L, Xiao Z (2014) Geologic characteristics of the Chang’E-3 exploration region. Science China Physics, Mechanics and AstronomyGoogle Scholar
  82. 82.
    Zhou F, Arvidson RE, Bennett K, Trease B, Lindemann R, Bellutta P, Iagnemma K, Senatore C (2014) Simulations of Mars rover traverses. J Field Robot 31(1):141–160. doi: 10.1002/rob.21483 CrossRefGoogle Scholar
  83. 83.
    Zimmerman W, Bonitz R, Feldman J (2001) Cryobot: an ice penetrating robotic vehicle for Mars and Europa. In: 2001 IEEE aerospace conference proceedings, vol 1, pp 1/311–1/323. IEEE. doi: 10.1109/AERO.2001.931722

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Robotics Innovation Center (RIC)Deutsches Forschungszentrum für künstliche Intelligenz (DFKI)BremenGermany

Personalised recommendations