Skip to main content
Log in

Discovering the Geographical Borders of Human Mobility

  • Fachbeitrag
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript


The availability of massive network and mobility data from diverse domains has fostered the analysis of human behavior and interactions. Broad, extensive, and multidisciplinary research has been devoted to the extraction of non-trivial knowledge from this novel form of data. We propose a general method to determine the influence of social and mobility behavior over a specific geographical area in order to evaluate to what extent the current administrative borders represent the real basin of human movement. We build a network representation of human movement starting with vehicle GPS tracks and extract relevant clusters, which are then mapped back onto the territory, finding a good match with the existing administrative borders. The novelty of our approach is the focus on a detailed spatial resolution, we map emerging borders in terms of individual municipalities, rather than macro regional or national areas. We present a series of experiments to illustrate and evaluate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others








  1. Aiello W, Chung F, Lu L (2000) A random graph model for massive graphs. In: STOC. ACM, New York, pp 171–180

    Chapter  Google Scholar 

  2. Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: Ordering points to identify the clustering structure. In: SIGMOD, pp 49–60

    Google Scholar 

  3. Benevenuto F, Rodrigues T, Cha M, Almeida VAF (2009) Characterizing user behavior in online social networks. In: Internet measurement conference, pp 49–62

    Google Scholar 

  4. Bringmann B, Berlingerio M, Bonchi F, Gionis A (2010) Learning and predicting the evolution of social networks. IEEE Intell Syst 25:26–35

    Article  Google Scholar 

  5. De Castro R, Grossman JW (1999) Famous trails to Paul Erdös. Math Intell 21:51–63

    Article  MATH  Google Scholar 

  6. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E, Stat Nonlinear Soft Matter Phys 70:066111

    Article  Google Scholar 

  7. Cook DJ, Crandall AS, Singla G, Thomas B (2010) Detection of social interaction in smart spaces. Cybern Syst 41(2):90–104

    Article  MATH  Google Scholar 

  8. Coscia M, Giannotti F, Pedreschi D (2011) A classification for community discovery methods in complex networks. Stat Anal Data Min 4(5):512–546

    Article  MathSciNet  Google Scholar 

  9. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: SIGKDD. AAAI Press, Menlo Park, pp 226–231

    Google Scholar 

  10. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174

    Article  MathSciNet  Google Scholar 

  11. Fortunato S, Barthélemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci USA 104(1):36–41

    Article  Google Scholar 

  12. Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: SIGKDD, pp 330–339

    Google Scholar 

  13. Gomez-Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: SIGKDD, pp 1019–1028

    Google Scholar 

  14. Guimera R, Nunes Amaral KA (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895–900

    Article  Google Scholar 

  15. Hecker D, Körner C, Stange H, Schulz D, May M (2011) Modeling micro-movement variability in mobility studies. In: Advancing geoinformation science for a changing world, LNG&C, vol 1, pp 121–140

    Chapter  Google Scholar 

  16. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Book  Google Scholar 

  17. Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev E, Stat Nonlinear Soft Matter Phys 80:5

    Google Scholar 

  18. Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) Wherenext: a location predictor on trajectory pattern mining. In: KDD, pp 637–646

    Chapter  Google Scholar 

  19. Nowell DL, Kleinberg J (2003) The link prediction problem for social networks. In: CIKM, pp 556–559

    Google Scholar 

  20. Page L, Brin S, Motwani R, Winograd T (1998) The pagerank citation ranking: bringing order to the web

  21. Ratti C, Sobolevsky S, Calabrese F, Andris C, Reades J, Martino M, Claxton R, Strogatz SH (2010) Redrawing the map of great Britain from a network of human interactions. PLoS ONE 5(12):5:e14248

    Article  Google Scholar 

  22. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA 105:1118–1123

    Article  Google Scholar 

  23. Thiemann C, Theis F, Grady D, Brune R, Brockmann D (2010) The structure of borders in a small world. PLoS ONE 5:11

    Article  Google Scholar 

  24. Wang D, Pedreschi D, Song C, Giannotti F, Barabasi AL (2011) Human mobility, social ties, and link prediction. In: SIGKDD, pp 1100–1108

    Google Scholar 

  25. Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: ICDM.

    Google Scholar 

  26. Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2011) Semitri: a framework for semantic annotation of heterogeneous trajectories. In: EDBT/ICDT, pp 259–270

    Chapter  Google Scholar 

  27. Yang J, Leskovec J (2010) Modeling information diffusion in implicit networks. In: ICDM, pp 599–608

    Google Scholar 

Download references


The authors wish to thank Alessandro Grossi and Michele Berlingerio for their technical support. We also acknowledge Octo Telematics S.p.A. for providing the datasets. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 270833.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Salvatore Rinzivillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinzivillo, S., Mainardi, S., Pezzoni, F. et al. Discovering the Geographical Borders of Human Mobility. Künstl Intell 26, 253–260 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: