Advertisement

KI - Künstliche Intelligenz

, Volume 25, Issue 3, pp 235–244 | Cite as

A Neuroscientific View on the Role of Emotions in Behaving Cognitive Agents

  • Julien Vitay
  • Fred H. Hamker
Fachbeitrag
  • 190 Downloads

Abstract

While classical theories systematically opposed emotion and cognition, suggesting that emotions perturbed the normal functioning of the rational thought, recent progress in neuroscience highlights on the contrary that emotional processes are at the core of cognitive processes, directing attention to emotionally-relevant stimuli, favoring the memorization of external events, valuating the association between an action and its consequences, biasing decision making by allowing to compare the motivational value of different goals and, more generally, guiding behavior towards fulfilling the needs of the organism. This article first proposes an overview of the brain areas involved in the emotional modulation of behavior and suggests a functional architecture allowing to perform efficient decision making. It then reviews a series of biologically-inspired computational models of emotion dealing with behavioral tasks like classical conditioning and decision making, which highlight the computational mechanisms involved in emotional behavior. It underlines the importance of embodied cognition in artificial intelligence, as emotional processing is at the core of the cognitive computations deciding which behavior is more appropriate for the agent.

Keywords

Emotion Cognition Behavior Computational neuroscience Cognitive agents 

Notes

Acknowledgements

The authors are in part supported by the German research foundation (Deutsche Forschungsgemeinschaft) grant (DFG HA2630/4-2) “The cognitive control of visual perception and action selection”.

References

  1. 1.
    Armony JL, Servan-Schreiber D, Cohen JD, Ledoux JE (1997) Computational modeling of emotion: explorations through the anatomy and physiology of fear conditioning. Trends Cogn Sci 1(1):28–34 CrossRefGoogle Scholar
  2. 2.
    Bach J (2009) Principles of synthetic intelligence PSI: an architecture of motivated cognition. Oxford University Press, Oxford CrossRefGoogle Scholar
  3. 3.
    Balleine BW, Liljeholm M, Ostlund SB (2009) The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res 199(1):43–52 CrossRefGoogle Scholar
  4. 4.
    Bastiaansen JACJ, Thioux M, Keysers C (2009) Evidence for mirror systems in emotions. Philos Trans R Soc Lond B, Biol Sci 364(1528):2391–2404 CrossRefGoogle Scholar
  5. 5.
    Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10(3):295–307 CrossRefGoogle Scholar
  6. 6.
    Becker-Asano C, Wachsmuth I (2010) Affective computing with primary and secondary emotions in a virtual human. Auton Agents Multi-Agent Syst 20(1):32–49 CrossRefGoogle Scholar
  7. 7.
    Brown J, Bullock D, Grossberg S (1999) How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues. J Neurosci 19(23):10 502–10 511 Google Scholar
  8. 8.
    Cahill L, Babinsky R, Markowitsch HJ, McGaugh JL (1995) The amygdala and emotional memory. Nature 377(6547):295–296 CrossRefGoogle Scholar
  9. 9.
    Chib VS, Rangel A, Shimojo S, O’Doherty JP (2009) Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J Neurosci 29(39):12315–12320 CrossRefGoogle Scholar
  10. 10.
    Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8(12):1704–1711 CrossRefGoogle Scholar
  11. 11.
    Deco G, Rolls ET (2005) Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. Cereb Cortex 15(1):15–30 CrossRefGoogle Scholar
  12. 12.
    Dranias MR, Grossberg S, Bullock D (2008) Dopaminergic and non-dopaminergic value systems in conditioning and outcome-specific revaluation. Brain Res 1238:239–287 CrossRefGoogle Scholar
  13. 13.
    Frank MJ, Claus ED (2006) Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol Rev 113(2):300–326 CrossRefGoogle Scholar
  14. 14.
    Grossberg S (1971) On the dynamics of operant conditioning. J Theor Biol 33(2):225–255 CrossRefGoogle Scholar
  15. 15.
    Grossberg S (1972) A neural theory of punishment and avoidance, i: Qualitative theory. Math Biosci 15:39–67 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Grossberg S, Levine DS (1987) Neural dynamics of attentionally modulated Pavlovian conditioning: blocking, interstimulus interval, and secondary reinforcement. Appl Opt 26(23):5015–5030 CrossRefGoogle Scholar
  17. 17.
    Grossberg S, Seidman D (2006) Neural dynamics of autistic behaviors: cognitive, emotional, and timing substrates. Psychol Rev 113(3):483–525 CrossRefGoogle Scholar
  18. 18.
    Haber S (2008) Parallel and integrative processing through the basal ganglia reward circuit: lessons from addiction. Biol Psychiatry 64(3):173–174 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 90(4):385–417 CrossRefGoogle Scholar
  20. 20.
    Koenigs M, Grafman J (2009) Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala. Neuroscientist 15(5):540–548 CrossRefGoogle Scholar
  21. 21.
    Lazarus RS (1999) The cognition-emotion debate: A bit of history. In: Dalgleish T, Power MJ (eds) Handbook of cognition and emotion. Wiley, New York, pp 3–19 Google Scholar
  22. 22.
    LeDoux J (2003) The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 23(4–5):727–738 CrossRefGoogle Scholar
  23. 23.
    Levine DS (2007) Neural network modeling of emotion. Phys Life Rev 4(1):37–63 CrossRefGoogle Scholar
  24. 24.
    Murray EA (2007) The amygdala, reward and emotion. Trends Cogn Sci 11(11):489–497 CrossRefGoogle Scholar
  25. 25.
    Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn Sci 9(5):242–249 CrossRefGoogle Scholar
  26. 26.
    Ohman A, Flykt A, Esteves F (2001) Emotion drives attention: detecting the snake in the grass. J Exp Psychol Gen 130(3):466–478 CrossRefGoogle Scholar
  27. 27.
    Ono T, Nakamura K, Nishijo H, Fukuda M (1986) Hypothalamic neuron involvement in integration of reward, aversion, and cue signals. J Neurophysiol 56(1):63–79 Google Scholar
  28. 28.
    O’Reilly RC, Frank MJ, Hazy TE, Watz B (2007) Pvlv: the primary value and learned value Pavlovian learning algorithm. Behav Neurosci 121(1):31–49 CrossRefGoogle Scholar
  29. 29.
    Picard R (ed) (1997) Affective Computing. MIT Press, Cambridge Google Scholar
  30. 30.
    Rao RPN (2010) Decision making under uncertainty: a neural model based on partially observable Markov decision processes. Front Comput Neurosci 4:146 CrossRefGoogle Scholar
  31. 31.
    Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: Variation in the effectiveness of reinforcement and non-reinforcement. In: Black AH, Prokasy WF (eds) Classical Conditioning II: Theory and Research. Appleton Century Crofts, New York Google Scholar
  32. 32.
    Richter-Levin G (2004) The amygdala, the hippocampus, and emotional modulation of memory. Neuroscientist 10(1):31–39 CrossRefGoogle Scholar
  33. 33.
    Roesch MR, Olson CR (2004) Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304(5668):307–310 CrossRefGoogle Scholar
  34. 34.
    Scherer KR, Shorr A, Johnstone T (eds) (2001) Appraisal processes in emotion: theory, methods, research. Oxford University Press, Canary Google Scholar
  35. 35.
    Schmajuk NA, DiCarlo JJ (1992) Stimulus configuration, classical conditioning, and hippocampal function. Psychol Rev 99(2):268–305 CrossRefGoogle Scholar
  36. 36.
    Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599 CrossRefGoogle Scholar
  37. 37.
    Suri RE, Schultz W (2001) Temporal difference model reproduces anticipatory neural activity. Neural Comput 13(4):841–862 zbMATHCrossRefGoogle Scholar
  38. 38.
    Sutton RS, Barto AG (1981) Toward a modern theory of adaptive networks: expectation and prediction. Psychol Rev 88(2):135–170 CrossRefGoogle Scholar
  39. 39.
    Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge. A Bradford Book Google Scholar
  40. 40.
    Takahashi YK, Roesch MR, Stalnaker TA, Haney RZ, Calu DJ, Taylor AR, Burke KA, Schoenbaum G (2009) The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62(2):269–280 CrossRefGoogle Scholar
  41. 41.
    Vitay J, Fix J, Beuth F, Schroll H, Hamker FH (2009) Biological models of reinforcement learning. Künstl Intell 3:12–18 Google Scholar
  42. 42.
    Vitay J, Hamker FH (2010) A computational model of basal ganglia and its role in memory retrieval in rewarded visual memory tasks. Front Comput Neurosci 4:1–18 Google Scholar
  43. 43.
    Vuilleumier P (2005) How brains beware: neural mechanisms of emotional attention. Trends Cogn Sci 9(12):585–594 CrossRefGoogle Scholar
  44. 44.
    Ziemke T (2008) On the role of emotion in biological and robotic autonomy. Biosystems 91:401–408 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Fakultät für InformatikTechnische Universität ChemnitzChemnitzDeutschland

Personalised recommendations