Advertisement

Annals of Microbiology

, Volume 69, Issue 9, pp 975–987 | Cite as

Filamentous fungi diversity in the natural fermentation of Amazonian cocoa beans and the microbial enzyme activities

  • Jean Aquino de Araújo
  • Nelson Rosa FerreiraEmail author
  • Silvia Helena Marques da Silva
  • Guilherme Oliveira
  • Ruan Campos Monteiro
  • Yamila Fernandes Mota Alves
  • Alessandra Santos LopesEmail author
Original Article

Abstract

Purpose

The purpose of this study was to investigate the diversity of filamentous fungi and the hydrolytic potential of their enzymes for a future understanding of the influence of these factors on the sensory characteristics of the cocoa beans used to obtain chocolate.

Methods

Filamentous fungi were isolated from the natural cocoa fermentation boxes in the municipality of Tucuman, Pará, Brazil, and evaluated for the potential production of amylases, cellulases, pectinases, and xylanases. The fermentation was monitored by analyzing the pH and temperature. The strains were identified by sequencing the ITS1/ITS4 section of the 5.8S rDNA and partially sequencing the 18S and 28S regions, and the molecular identification was confirmed by phylogenetic reconstruction.

Result

The fungi isolated were comprised of three classes from the Ascomycota phylum and one class from the Basidiomycota phylum. There were found 19 different species, of this amount 16 had never been previously reported in cocoa fermentation. This fact characterizes the fermentation occurring in this municipality as having wide fungal diversity. Most of the strains isolated had the ability to secrete enzymes of interest. Cladosporium cladosporioides, Fomitopsis subtropical, Aspergillus versicolor, Penicillium pimiteouiense, Phanerochaete australis, Neonothopanus nambi, and Aspergillus parasiticus were the strains that excelled in the secretion of the following enzymes: amylase, pectinase, cellulase, and xylanase.

Conclusion

The presence of 16 species not yet reported in cocoa seed fermentations and their potential hydrolytic activities show a diversity of filamentous fungi in this microbial biome that needs to be better understood.

Keywords

Amylase Cellulase Filamentous fungi Pectinase Theobroma cocoa Xylanase 

Notes

Acknowledgments

The authors wish to thank the Evandro Chagas Institute (IEC/SVS/MS) for the PCR analyses, and the Graduate Program in Food Science and Technology of the Federal University of Pará (PPGCTA/UFPA) for providing the infrastructure. GO is funded by CNPq (307479/2016-1) and the Global Challenges Research Fund, UK Research and Innovation (BB/P027849/1 – CABANA).

Funding

This work was supported by the Instituto Tecnológico Vale (Cacau P2) (Brazil) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflicts of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

References

  1. Abdullahi G, Muhamad R, Dzalkhifli SUR, Sinniah UR (2018) Analysis of quality retentions in cocoa beans exposed to solar heat treatment in cardboard solar heater box. Cogent Food Agric 4:1483061.  https://doi.org/10.1080/23311932.2018.1483061
  2. Adhikari M, Yadav DR, Kim S, Um YH, Kim HS, Lee HB, Lee YS (2015) Discovery of two new Talaromyces species from crop field soil in Korea. Mycobiology 43(4):402–407.  https://doi.org/10.5941/MYCO.2015.43.4. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarez-Navarrete M, López GR, García AF, López GR, Martínez-Pacheco MM (2015) Selection and molecular identification of fungal isolates that produce xylanolytic enzymes. Genet Mol Res 14:8100–8116.  https://doi.org/10.4238/2015.July.17.19 CrossRefPubMedGoogle Scholar
  4. Downes FP, Ito K (2001) Compendium of methods for microbiological examination of foods, 4th ed. American Public Health Association (APHA), Washington, D. C.Google Scholar
  5. Bouras N, Kim YM, Strelkov SE (2009) Influence of water activity and temperature on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. Int J Food Microbiol 131:251–255.  https://doi.org/10.1016/j.ijfoodmicro.2009.02.001
  6. Chan LG, Cohen JL, Bell JMLNM (2018) Conversion of agricultural streams and food-processing by-products to value-added compounds using filamentous fungi. Annu Rev Food Sci T 9:503–523.  https://doi.org/10.1146/annurev-food-030117-012626
  7. Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, Lafe K, Bui U, Limaye AP, Cookson BT (2001) Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol 39:4042–4051.  https://doi.org/10.1128/JCM.39.11.4042-4051.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cocolin L, Ercolini D (2008) Molecular techniques in the microbial ecology of fermented foods. Springer, New YorkCrossRefGoogle Scholar
  9. Copetti MV, Iamanaka BT, Pereira JL, Frisvad JC, Taniwaki MH (2011a) Mycobiota of cocoa: from farm to chocolate. Food Microbiol 28:1499–1504.  https://doi.org/10.1016/j.fm.2011.08.005
  10. Copetti MV, Iamanaka BT, Pereira JL, Fungaro MH, Taniwaki MH (2011b) Aflatoxigenic fungi and aflatoxin in cocoa. Int J Food Microbiol 148(2):141–144.  https://doi.org/10.1016/j.ijfoodmicro.2011.05.020
  11. Damaso MCT, Terzi SC, Farias AX, Oliveira ACP, Fraga ME, Couri S (2012) Selection of cellulolytic fungi isolated from diverse substrates. Braz Arch Biol Techn 55(4):513–520.  https://doi.org/10.1590/S1516-89132012000400005 CrossRefGoogle Scholar
  12. Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayem SMA (2013) Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springerplus.  https://doi.org/10.1186/2193-1801-2-154
  13. Dias MD, Pozza EA, Abreu MS, Miranda EO (2005) Effect of temperature on mycelial growth, production and conidial germination of Colletotrichum spp from Coffea arabica L. Cienc Agrotec 29(3):545–552CrossRefGoogle Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.  https://doi.org/10.1111/j.1558-5646.1985.tb00420.x CrossRefPubMedGoogle Scholar
  15. Garcia D, Ramos AJ, Sanchis V, Marín S (2011) Modelling the effect of temperature and water activity in the growth boundaries of Aspergillus ochraceus and Aspergillus parasiticus. Food Microbiol 28(3):406–417.  https://doi.org/10.1016/j.fm.2010.10.004 CrossRefPubMedGoogle Scholar
  16. Godet M, Munaut F (2010) Molecular strategy for identification in Aspergillus section Flavi. FEMS Microbiol Lett 304(2):157–168.  https://doi.org/10.1111/j.1574-6968.2009.01890.x CrossRefPubMedGoogle Scholar
  17. Hankin L, Anagnostakis SL (1975) The use of solid media for detection of enzymes production by fungi. Mycologia 67(3):597–607CrossRefGoogle Scholar
  18. Hong JY, Kim YH, Jung MH, Jo CW, Choi JE (2011) Characterization of xylanase of Cladosporium cladosporioides H1 isolated from Janggyeong Panjeon in Haeinsa Temple. Mycobiology :306–309. https:// doi.org/ https://doi.org/10.5941/MYCO.2011.39.4.306
  19. Justé A, Thommad BPHJ, Lievens B (2008) Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbial 25:745–761.  https://doi.org/10.1016/j.fm.2008.04.009 CrossRefGoogle Scholar
  20. Khokhar IB, Mukhtar I, Mushtaq S (2011) Isolation and screening of amylolytic filamentous fungi. J Appl Sci Environ Manage 15(1):203–206.  https://doi.org/10.4314/jasem.v15i1.68442 CrossRefGoogle Scholar
  21. Kumar S, Stecher G, Tamura K (2016) Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Larone DH (2002) Medically important fungi - A guide to identification, 4rd edn. American Society for Microbiology Press, WashingtonGoogle Scholar
  23. Lucheta AR, Cannavan FS, Roesch LFW, Tsai SM, Kuramae EE (2016) Fungal community assembly in the Amazonian dark earth. Microb Ecol 71(4):962–973.  https://doi.org/10.1007/s00248-015-0703-7 CrossRefPubMedGoogle Scholar
  24. Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes – ecological, functional and phylogenetic review. J Basic Microb 50:5–20.  https://doi.org/10.1002/jobm.200900338 CrossRefGoogle Scholar
  25. Macedo ASL, Negreiros CVB, Bispo ES, Silva AS, Druzian JI (2013) A prospective study of cocoa fermentation (Theobroma cacao L.) under the focus on patent applications filed in the world between 1899 and 2012. GEINTEC-Gestão, Inovação e Tecnologias 3(5):362–371 (in Portuguese.  https://doi.org/10.7198/S2237-0722201300050029 CrossRefGoogle Scholar
  26. Mcguire KL, Fierer N, Bateman C, Treseder KK, Turner BL (2012) Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63:804–812.  https://doi.org/10.1007/s00248-011-9973-x CrossRefPubMedGoogle Scholar
  27. Mounjouenpou P, Gueule D, Guyot B, Tondje PR, Fontana-Tachon A, Guiraud JP (2012) Incidence of pod integrity on the fungal microflora and ochratoxin-a production in cocoa. JBLS 3(1):254–265.  https://doi.org/10.5296/jbls.v3i1.2231 CrossRefGoogle Scholar
  28. Najafzadeh MJ, Sun J, Vicente V, Xi L, Hoog GS (2010) Fonsecaea nubica sp. a new species of agent of human chromoblastomycosis revealed using molecular data. Med Mycol 48(6):800–806.  https://doi.org/10.3109/13693780903503081 CrossRefPubMedGoogle Scholar
  29. Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH (2007) The microbiology of Ghanaian cocoa fermentation analyzed using culture-dependente and culture-independent methods. Int J Food Microbiol 114(2):168–186.  https://doi.org/10.1016/j.ijfoodmicro.2006.09.010 CrossRefPubMedGoogle Scholar
  30. Oliveira TO, Pimenta CJ, Cardoso PG, Souza SMC, Fabrício LFF, Leal RS (2011) Production of pectin lyase by isolates Cladosporium cladosporioides using submerged fermentation and grape skin as substrate. Higiene Alimentar 25:217–218Google Scholar
  31. Ozturk G, Young GM (2017) Food evolution: the impact of society and science on the fermentation of cocoa beans. CRFSFS 16:431–455.  https://doi.org/10.1111/1541-4337.12264 CrossRefGoogle Scholar
  32. Peay KG, Baraloto C, Fine PVA (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. The ISME J 7:1852–1861.  https://doi.org/10.1038/ismej.2013.66 CrossRefPubMedGoogle Scholar
  33. Reddy PL, Sreeramulu A (2012) Isolation, identification and screening of pectinolytic fungi from different soil samples of Chittoor district. Int J Life Sci Biotechnol Pharma Res 1(3):186–193Google Scholar
  34. Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, De Gruyter J et al (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15. 10.3114%2Fsim.2009.64.01Google Scholar
  35. Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, Gruyter J de, Hoog GS de, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya KT, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys Å, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Rivas Plata E, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, SpataforaCrous JW, Groenewald JZ, Boehm EWA, Burgess TI, Gruyter J de, Hoog DS de, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys Å, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Rivas Plata E, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15.  https://doi.org/10.3114/sim.2009.64.01
  36. Stamford TLM, Araújo JM, Stamford NP (1998) Enzymatic activity of microorganisms isolated from yam bean legume (Pachyrhizus erosus L. Urban). Food Sci Tech-Brazil 18(4):382–385.  https://doi.org/10.1590/S0101-20611998000400004 CrossRefGoogle Scholar
  37. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microb 43:777–780Google Scholar
  38. Visintin S, Alessandria V, Valente A, Dolci P, Cocolin L (2016) Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa. Int J Food Microbiol 216:69–78.  https://doi.org/10.1016/j.ijfoodmicro.2015.09.004 CrossRefPubMedGoogle Scholar
  39. Watanabe T (2010) Pictorial atlas of soil and seed fungi - morphologies of cultured fungi and key to species. CRC Press, New YorkCrossRefGoogle Scholar

Copyright information

© Università degli studi di Milano 2019

Authors and Affiliations

  1. 1.Laboratory of Biotechnological Processes. Program of Post-Graduation in Food Science and Technology (PPGCTA)Federal University of Pará (UFPA)BelémBrazil
  2. 2.Mycology Laboratory, Section of Bacteriology and MycologyEvandro Chagas Institute (IEC/SVS/MS)AnanindeuaBrazil
  3. 3.Instituto Tecnológico Vale (ITV)BelémBrazil
  4. 4.Graduate Program of Biology of Infectious Agents and Parasitological, Institute of Biological SciencesFederal University of Pará (UFPA)BelémBrazil

Personalised recommendations