Advertisement

Annals of Microbiology

, Volume 68, Issue 12, pp 915–929 | Cite as

Analysis of the diversity of aerobic, thermophilic endospore-forming bacteria in two Algerian hot springs using cultural and non-cultural methods

  • Mohamed Amine GomriEmail author
  • Tedj El Moulouk Khaldi
  • Karima Kharroub
Original Article

Abstract

Terrestrial hot environments are important resources for isolation of thermophilic microorganisms. Few studies have been made on microbial diversity of Algerian geothermal sites. This paper reports the diversity of thermophilic, aerobic endospore-forming bacteria from water and sediment samples taken from Hammam Ouled Ali and Hammam Debagh, two hot springs with a wide range of temperatures and a very rich mineral composition, located in the region of Guelma, north-east of Algeria using culture-dependent and culture-independent approaches Sequences of the V4 region of the 16S rRNA gene from environmental DNA extracted from sediment samples were analyzed and a set of isolates from water and sediment have been characterized by phenotypic and molecular methods. Phylogenetic surveys using environmental DNA sequences indicated that three families dominated the two hot springs: Planococcaceae, Bacillaceae, and Paenibacillaceae. Phenotypic characterization revealed the morphological, biochemical, and physiological properties of these microorganisms, all of which exhibited a range of common extracellular enzymatic activities. Amplified ribosomal DNA restriction analysis (ARDRA) was used to cluster isolates into different phylotypic groups and phylogenetic analysis of 16S rRNA gene sequences of selected isolates showed that all were closely related to four genera of thermophilic Bacilli: Bacillus, Anoxybacillus, Geobacillus, and Brevibacillus. Our results provide important insights into the microbial ecology of Guelma hot springs. They showed that the phylogenetic diversity of bacterial communities within the two studied hot springs was mostly aerobic, with the presence of taxonomic groups of great biotechnological interest. Bioprospection of thermozymes and other biomolecules within these communities will probably provide a data basis for their industrial exploitation.

Keywords

Thermophilic Bacilli Endospore-forming Microbial diversity Hot spring Algeria 

Notes

Acknowledgements

Don Cowan and Thulani Makhalanyane, Centre for Microbial Ecology and Genomics, University of Pretoria, are gratefully acknowledged for their support in phylogenetics training. We also wish to thank Djamel Eddine Mekhancha, Laboratoire ALNUTS, Université Frères Mentouri Constantine 1 for his support during sampling, isolation, and phenotypic study.

Funding

This study received financial support from the following organizations: The Algerian Ministry of Higher Education and Scientific Research and The Genomics Research Institute and the University of Pretoria, South Africa.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

N/A

Supplementary material

13213_2018_1401_MOESM1_ESM.docx (58 kb)
ESM 1 (DOCX 58 kb)

References

  1. Aanniz T et al (2015) Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz J Microbiol 46:443–453.  https://doi.org/10.1590/s1517-838246220140219 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adiguzel A, Ozkan H, Baris O, Inan K, Gulluce M, Sahin F (2009) Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J Microbiol Methods 79:321–328.  https://doi.org/10.1016/j.mimet.2009.09.026 CrossRefPubMedGoogle Scholar
  3. Amarouche-Yala S, Benouadah A, Bentabet AEO, López-García P (2014) Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs. Extremophiles 18:1035–1047.  https://doi.org/10.1007/s12403-014-0130-x CrossRefPubMedGoogle Scholar
  4. Amarouche-Yala S, Benouadah A, el Ouahab BA, Moulla AS, Ouarezki SA, Azbouche A (2015) Physicochemical, bacteriological, and radiochemical characterization of some Algerian thermal spring waters. Water Qual Expo Health 7:233–249.  https://doi.org/10.1007/s12403-014-0130-x CrossRefGoogle Scholar
  5. Amin A et al (2017) Diversity and distribution of thermophilic bacteria in hot springs of Pakistan. Microb Ecol 74:116–127.  https://doi.org/10.1007/s00248-017-0930-1 CrossRefPubMedGoogle Scholar
  6. Antranikian G (2007) Industrial relevance of thermophiles and their enzymes. In: Thermophiles: biology and technology at high temperatures, pp 113–186.  https://doi.org/10.1201/9781420008852.ch8 CrossRefGoogle Scholar
  7. Ash C, Priest F, Collins M (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64:253.  https://doi.org/10.1007/BF00873085 CrossRefPubMedGoogle Scholar
  8. Atlas RM (2005) Handbook of media for environmental microbiology. CRC Press, Boca Raton.  https://doi.org/10.1201/9781420037487 CrossRefGoogle Scholar
  9. Bahri F, Saibi H, Cherchali M-E-H (2011) Characterization, classification, and determination of drinkability of some Algerian thermal waters. Arab J Geosci 4:207–219.  https://doi.org/10.1007/s12517-010-0127-0 CrossRefGoogle Scholar
  10. Bartholomew JW, Mittwer T (1950) A simplified bacterial spore stain. Stain Technol 25:153–156.  https://doi.org/10.3109/10520295009110979 CrossRefPubMedGoogle Scholar
  11. Battista JR (2016) Deinococcus–Thermus group. In: Encyclopedia of life sciences. Wiley.  https://doi.org/10.1002/9780470015902.a0021151
  12. Battista JR, Rainey FA (2015) Deinococcus. In: Whitman WB et al (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley.  https://doi.org/10.1002/9781118960608.gbm00475
  13. Belduz AO, Dulger S, Demirbag Z (2003) Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320.  https://doi.org/10.1099/ijs.0.02473-0 CrossRefPubMedGoogle Scholar
  14. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, Sayers EW (2018) GenBank. Nucleic Acids Res 46:D41–D47.  https://doi.org/10.1099/00207713-47-4-1246 CrossRefPubMedGoogle Scholar
  15. Bhatia S, Batra N, Pathak A, Green SJ, Joshi A, Chauhan A (2015) Metagenomic evaluation of bacterial and archaeal diversity in the geothermal hot springs of Manikaran, India. Genome Announc 3:e01544–e01514.  https://doi.org/10.1128/genomea.01544-14 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Blanc M, Marilley L, Beffa T, Aragno M (1997) Rapid identification of heterotrophic, thermophilic, spore-forming bacteria isolated from hot composts. Int J Syst Evol Microbiol 47:1246–1248.  https://doi.org/10.1099/00207713-47-4-1246 CrossRefGoogle Scholar
  17. Bragger J, Daniel RM, Coolbear T, Morgan HW (1989) Very stable enzymes from extremely thermophilic archaebacteria and eubacteria. Appl Microbiol Biotechnol 31:556–561.  https://doi.org/10.1007/BF00270794 CrossRefGoogle Scholar
  18. Brock TD (2012) Thermophilic microorganisms and life at high temperatures. Springer Science & Business Media.  https://doi.org/10.1007/978-1-4612-6284-8 CrossRefGoogle Scholar
  19. Carlin F (2011) Origin of bacterial spores contaminating foods. Food Microbiol 28:177–182.  https://doi.org/10.1016/j.fm.2010.07.008 CrossRefPubMedGoogle Scholar
  20. Castenholz R (2001) Class I. “Chloroflexi” Bergey’s manual of systematic bacteriology 1:427.  https://doi.org/10.1002/9781118960608.cbm00016
  21. Chan CS, Chan K-G, Tay Y-L, Chua Y-H, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.00177
  22. Charlesworth J, Burns BP (2016) Extremophilic adaptations and biotechnological applications in diverse environments. AIMS Microbiol 2:251–261.  https://doi.org/10.3934/microbiol.2016.3.251 CrossRefGoogle Scholar
  23. Cole JR et al (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642.  https://doi.org/10.1093/nar/gkt1244 CrossRefPubMedGoogle Scholar
  24. Contesini FJ, Melo RR, Sato HH (2017) An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol 1–14.  https://doi.org/10.1080/07388551.2017.1354354 CrossRefGoogle Scholar
  25. Dai J, Liu Y, Lei Y, Gao Y, Han F, Xiao Y, Peng H (2011) A new subspecies of Anoxybacillus flavithermus ssp. yunnanensis ssp. nov. with very high ethanol tolerance. FEMS Microbiol Lett 320:72–78.  https://doi.org/10.1111/j.1574-6968.2011.02294.x CrossRefPubMedGoogle Scholar
  26. De Vos P (2011) Studying the bacterial diversity of the soil by culture-independent approaches. In: Endospore-forming soil bacteria. Springer, pp 61–72.  https://doi.org/10.1007/978-3-642-19577-8_3 Google Scholar
  27. De Vos P (2015) Bacillales. In: Whitman WB et al (eds) Bergey’s manual of systematics of archaea and Bacteria. Wiley.  https://doi.org/10.1002/9781118960608.obm00057
  28. De Vos P et al (2011) Phylum BXIII. Firmicutes. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual® of systematic bacteriology, vol 3. Springer Science & Business Media, New York, pp 625–637.  https://doi.org/10.1007/978-0-387-21609-6_29 CrossRefGoogle Scholar
  29. De Vos P, Ludwig W, Schleifer K-H, Whitman WB (2015) “Paenibacillaceae” fam. nov. In: Whitman WB et al (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley.  https://doi.org/10.1002/9781118960608.fbm00114
  30. Derekova A, Mandeva R, Kambourova M (2008) Phylogenetic diversity of thermophilic carbohydrate degrading bacilli from Bulgarian hot springs. World J Microbiol Biotechnol 24:1697–1702.  https://doi.org/10.1007/s11274-008-9663-0 CrossRefGoogle Scholar
  31. DeSantis TZ et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072.  https://doi.org/10.1128/aem.03006-05 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dumorne K, Córdova DC, Astorga-Eló M, Renganathan P (2017) Extremozymes: a potential source for industrial applications. J Microbiol Biotechnol 27:649–659.  https://doi.org/10.4014/jmb.1611.11006 CrossRefPubMedGoogle Scholar
  33. Dunlap CA, Kwon S-W, Rooney AP, Kim S-J (2015) Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int J Syst Evol Microbiol 65:3487–3492.  https://doi.org/10.1099/ijsem.0.000441 CrossRefPubMedGoogle Scholar
  34. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119.  https://doi.org/10.1016/j.mib.2015.05.011 CrossRefPubMedGoogle Scholar
  36. Farrelly V, Rainey FA, Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801.  https://doi.org/10.1007/bf01919508 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fekraoui A, Kedaid F-Z (2005) Geothermal resources and uses in Algeria: a country update report. In: ProceedingsGoogle Scholar
  38. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 783–791.  https://doi.org/10.2307/2408678 CrossRefGoogle Scholar
  39. Field MS (1999) Karst hydrogeology and human activities: impacts, consequences, and implications. Environ Eng Geosci V:487–489.  https://doi.org/10.2113/gseegeosci.V.4.487 CrossRefGoogle Scholar
  40. Foti MJ, Sorokin DY, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2008) Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia). Extremophiles 12:133–145.  https://doi.org/10.1007/s00792-007-0117-7 CrossRefPubMedGoogle Scholar
  41. Frazier WC (1926) A method for the detection of changes in gelatin due to bacteria. J Infect Dis 302–309.  https://doi.org/10.1093/infdis/39.4.302 CrossRefGoogle Scholar
  42. Gauvry E, Mathot A-G, Leguérinel I, Couvert O, Postollec F, Broussolle V, Coroller L (2017) Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment. Res Microbiol 168:369–378.  https://doi.org/10.1016/j.resmic.2016.10.006 CrossRefPubMedGoogle Scholar
  43. Gomes E, de Souza AR, Orjuela GL, Da Silva R, de Oliveira TB, Rodrigues A (2016) Applications and benefits of thermophilic microorganisms and their enzymes for industrial biotechnology. In: Gene expression systems in fungi: advancements and applications. Springer, pp 459–492.  https://doi.org/10.1007/978-3-319-27951-0_21 Google Scholar
  44. Gómez F, Parro V (2012) Applications of extremophiles in astrobiology: habitability and life detection strategies. In: Adaption of microbial life to environmental extremes. Springer, pp 199–229.  https://doi.org/10.1007/978-3-211-99691-1_9 CrossRefGoogle Scholar
  45. Gomri MA, Rico-Díaz A, Escuder-Rodríguez J-J, El Moulouk Khaldi T, González-Siso M-I, Kharroub K (2018) Production and characterization of an extracellular acid protease from thermophilic Brevibacillus sp. OA30 isolated from an Algerian hot spring. Microorganisms 6:31.  https://doi.org/10.3390/microorganisms6020031 CrossRefPubMedCentralGoogle Scholar
  46. Gordon RE, Haynes W, Pang CH-N, Smith N (1973) The genus Bacillus. US Department of Agriculture handbook, vol 427Google Scholar
  47. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 857–871.  https://doi.org/10.2307/2528823 CrossRefGoogle Scholar
  48. Hayashi M, Rosenberry DO (2002) Effects of ground water exchange on the hydrology and ecology of surface water. Groundwater 40:309–316.  https://doi.org/10.1111/j.1745-6584.2002.tb02659.x CrossRefGoogle Scholar
  49. Hussein EI, Jacob JH, Shakhatreh MAK, Abd Al-razaq MA, Juhmani AF, Cornelison CT (2017) Exploring the microbial diversity in Jordanian hot springs by comparative metagenomic analysis. MicrobiologyOpen 6:e00521.  https://doi.org/10.1002/mbo3.521 CrossRefPubMedCentralGoogle Scholar
  50. Jain D, Sunda SD, Sanadhya S, Nath DJ, Khandelwal SK (2017) Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. 3 Biotech 7:4.  https://doi.org/10.1007/s13205-016-0583-7 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kambourova M, Radchenkova N, Tomova I, Bojadjieva I (2016) Thermophiles as a promising source of exopolysaccharides with interesting properties. In: Biotechnology of extremophiles. Springer, pp 117–139.  https://doi.org/10.1007/978-3-319-13521-2_4 CrossRefGoogle Scholar
  52. Khyami-Horani H (1996) Thermotolerant strain of Bacillus licheniformis producing lipase. World J Microbiol Biotechnol 12:399–401.  https://doi.org/10.1007/bf00340219 CrossRefPubMedGoogle Scholar
  53. Kikani B, Sharma A, Singh S (2015) Culture dependent diversity and phylogeny of thermophilic bacilli from a natural hot spring reservoir in the Gir Forest, Gujarat (India). Microbiology 84:687–700.  https://doi.org/10.1134/S0026261715050124 CrossRefGoogle Scholar
  54. Krishnamurthi S, Ruckmani A, Pukall R, Chakrabarti T (2010) Psychrobacillus gen. nov. and proposal for reclassification of Bacillus insolitus Larkin & Stokes, 1967, B. psychrotolerans Abd-El Rahman et al., 2002 and B. psychrodurans Abd-El Rahman et al., 2002 as Psychrobacillus insolitus comb. nov., Psychrobacillus psychrotolerans comb. nov. and Psychrobacillus psychrodurans comb. nov. Syst Appl Microbiol 33:367–373.  https://doi.org/10.1016/j.syapm.2010.06.003 CrossRefPubMedGoogle Scholar
  55. Kuisiene N, Raugalas J, Stuknyte M, Chitavichius D (2007) Identification of the genus Geobacillus using genus-specific primers, based on the 16S–23S rRNA gene internal transcribed spacer. FEMS Microbiol Lett 277:165–172.  https://doi.org/10.1111/j.1574-6968.2007.00954.x CrossRefPubMedGoogle Scholar
  56. Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Ann Microbiol 64:741–751.  https://doi.org/10.1007/s13213-013-0709-7 CrossRefGoogle Scholar
  57. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  58. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659.  https://doi.org/10.1093/bioinformatics/btl158 CrossRefPubMedGoogle Scholar
  59. Logan NALA, Allan RNAN (2008) Aerobic, endospore-forming bacteria from antarctic geothermal soils. In: Microbiology of Extreme Soils, pp 155–175.  https://doi.org/10.1007/978-3-540-74231-9_8 CrossRefGoogle Scholar
  60. Logan NA, Halket G (2011) Developments in the taxonomy of aerobic, endospore-forming bacteria. In: Endospore-forming soil bacteria. Springer, pp 1–29.  https://doi.org/10.1007/978-3-642-19577-8_1 Google Scholar
  61. Logan NA, Vos PD (2015a) Bacillaceae. In: Whitman WB et al (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley.  https://doi.org/10.1002/9781118960608.fbm00112
  62. Logan NA, Vos PD (2015b) Bacillus. In: Whitman WB et al (eds) Bergey’s manual of systematics of archaea and Bacteria. Wiley.  https://doi.org/10.1002/9781118960608.gbm00530
  63. Logan NA et al (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121.  https://doi.org/10.1099/ijs.0.013649-0 CrossRefPubMedGoogle Scholar
  64. Manachini P, Fortina M, Parini C, Craveri R (1985) Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. Int J Syst Evol Microbiol 35:493–496.  https://doi.org/10.1099/00207713-35-4-493 CrossRefGoogle Scholar
  65. Mandic-Mulec I, Prosser JI (2011) Diversity of endospore-forming bacteria in soil: characterization and driving mechanisms. In: Endospore-forming Soil Bacteria. Springer, pp 31–59.  https://doi.org/10.1007/978-3-642-19577-8_2 Google Scholar
  66. Mandic-Mulec I, Stefanic P, van Elsas JD (2016) Ecology of Bacillaceae. In: The bacterial spore: from molecules to systems. American Society of Microbiology, pp 59–85.  https://doi.org/10.1128/microbiolspec.TBS-0017-2013
  67. Maurer K-H (2004) Detergent proteases. Curr Opin Biotechnol 15:330–334.  https://doi.org/10.1016/j.copbio.2004.06.005 CrossRefPubMedGoogle Scholar
  68. McMullan G, Christie J, Rahman T, Banat I, Ternan N, Marchant R (2004) Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Portland Press Limited.  https://doi.org/10.1042/bst0320214 CrossRefGoogle Scholar
  69. Menzel P et al (2015) Comparative metagenomics of eight geographically remote terrestrial hot springs. Microb Ecol 70:411–424.  https://doi.org/10.1007/s00248-015-0576-9 CrossRefPubMedGoogle Scholar
  70. Miller D, Bryant J, Madsen E, Ghiorse W (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724PubMedPubMedCentralGoogle Scholar
  71. Müller AL et al (2014) Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents. ISME J 8:1153–1165.  https://doi.org/10.1038/ismej.2013.225 CrossRefPubMedGoogle Scholar
  72. Nazina T et al (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evol Microbiol 51:433–446.  https://doi.org/10.1099/00207713-51-2-433 CrossRefPubMedGoogle Scholar
  73. Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76:5269–5273.  https://doi.org/10.1073/pnas.76.10.5269 CrossRefPubMedGoogle Scholar
  74. Panda AK, Bisht SS, Kumar NS, De Mandal S (2015) Investigations on microbial diversity of Jakrem hot spring, Meghalaya, India using cultivation-independent approach. Genom Data 4:156–157.  https://doi.org/10.1016/j.gdata.2015.04.016 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Panosyan H (2017) Phylogenetic diversity of thermophilic bacilli isolated from geothermal springs of Nagorno Karabakh. Chem Biol 51:179–185Google Scholar
  76. Pikuta E et al (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavitherms comb. nov. Int J Syst Evol Microbiol 50:2109–2117.  https://doi.org/10.1099/00207713-50-6-2109 CrossRefPubMedGoogle Scholar
  77. Poli A, Romano I, Cordella P, Orlando P, Nicolaus B, Berrini CC (2009) Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 13:867–874.  https://doi.org/10.1007/s00792-009-0274-y CrossRefPubMedGoogle Scholar
  78. Priest FG, Goodfellow M, Tood C (1988) A numerical classification of the genus Bacillus. Microbiology 134:1847–1882.  https://doi.org/10.1099/00221287-134-7-1847 CrossRefGoogle Scholar
  79. Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99:7907–7913.  https://doi.org/10.1007/s00253-015-6874-9 CrossRefPubMedGoogle Scholar
  80. Reysenbach A, Pace N (1995) Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 101–107Google Scholar
  81. Reysenbach A-L et al. (2001) Phylum BI. Aquificae phy. nov. In: Bergey’s manual® of systematic bacteriology. Springer, pp 359–367.  https://doi.org/10.1007/978-0-387-21609-6_18 CrossRefGoogle Scholar
  82. Saibi H (2009) Geothermal resources in Algeria. Renew Sust Energ Rev 13:2544–2552.  https://doi.org/10.1016/j.geothermics.2007.02.002 CrossRefGoogle Scholar
  83. Saitou N, Nei M (1986) The neighbor-joining method—a new method for reconstructing phylogenetic trees. In: Japanese Journal of Genetics, vol 6. Genetics Soc Japan Natl Inst Genetics, Yata, Mishima, Shizuoka 411, Japan, pp 611–611.  https://doi.org/10.1093/oxfordjournals.molbev.a040454
  84. Satyanarayana T, Littlechild J, Kawarabayasi Y (2013) Thermophilic microbes in environmental and industrial biotechnology. In: Biotechnology of Thermophiles. Springer.  https://doi.org/10.1007/978-94-007-5899-5 Google Scholar
  85. Sayeh R, Birrien JL, Alain K, Barbier G, Hamdi M, Prieur D (2010) Microbial diversity in Tunisian geothermal springs as detected by molecular and culture-based approaches. Extremophiles 14:501–514.  https://doi.org/10.1007/s00792-010-0327-2 CrossRefPubMedGoogle Scholar
  86. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17.  https://doi.org/10.1139/w03-076 CrossRefPubMedGoogle Scholar
  87. Schleifer K-H (2009) Phylum XIII. Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). In: Bergey’s manual® of systematic bacteriology. Springer, pp 19–1317.  https://doi.org/10.1007/978-0-387-68489-5_3 CrossRefGoogle Scholar
  88. Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Evol Microbiol 46:939–946.  https://doi.org/10.1099/00207713-47-1-248 CrossRefGoogle Scholar
  89. Shivaji S, Srinivas T, Reddy G (2014) The family Planococcaceae. In: The Prokaryotes. Springer, pp 303–351.  https://doi.org/10.1007/978-3-642-30120-9_351 Google Scholar
  90. Soares MM, Silva R, Gomes E (1999) Screening of bacterial strains for pectinolytic activity: characterization of the polygalacturonase produced by Bacillus sp. Rev Microbiol 30:299–303.  https://doi.org/10.1590/S0001-37141999000400002 CrossRefGoogle Scholar
  91. Song ZQ et al (2013) Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environ Microbiol 15:1160–1175.  https://doi.org/10.1111/1462-2920.12025 CrossRefPubMedGoogle Scholar
  92. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035.  https://doi.org/10.1073/pnas.0404206101 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Thompson JD, Higgins DG, Gibson TJ (1994) Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680.  https://doi.org/10.1093/nar/22.22.4673 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Methods for general and molecular microbiology, 3rd edn. American Society of Microbiology, pp 330–393.  https://doi.org/10.1128/9781555817497.ch15
  95. Tiwari K, Thakur HK (2014) Diversity and molecular characterization of dominant Bacillus amyloliquefaciens (JNU-001) endophytic bacterial strains isolated from native neem varieties of Sanganer region of Rajasthan. J Biodivers Biopros Dev 1:2.  https://doi.org/10.4172/2376-0214.1000115 CrossRefGoogle Scholar
  96. Trujillo ME (2001) Actinobacteria. In: Encyclopedia of life sciences. Wiley, pp 1–20.  https://doi.org/10.1002/9780470015902.a0020366.pub2
  97. Urbieta MS, Donati ER, Chan K-G, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: biodiversity, science, and applications. Biotechnol Adv 33:633–647.  https://doi.org/10.1016/j.biotechadv.2015.04.007 CrossRefPubMedGoogle Scholar
  98. Weigmann H (1898) Ueber zwei an der Käsefereifung beteiligte Bakterien. Bakteriol Parasitenkd Infektionskr Hyg Abt II Zentbl. Hyg. Abt. 820–834Google Scholar
  99. Yoon J-H, Lee K-C, Weiss N, Kho YH, Kang KH, Park Y-H (2001) Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of th. Int J Syst Evol Microbiol 51:1079–1086.  https://doi.org/10.1099/00207713-51-3-1079 CrossRefPubMedGoogle Scholar
  100. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol.  https://doi.org/10.1099/ijsem.0.001755
  101. Zhang Y, He S, Simpson BK (2018) Enzymes in food bioprocessing—novel food enzymes, applications, and related techniques. Curr Opin Food Sci.  https://doi.org/10.1016/j.cofs.2017.12.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and the University of Milan 2018

Authors and Affiliations

  1. 1.Equipe Métabolites des Extrêmophiles (METEX), Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l’Alimentation et des Technologies Agro Alimentaires (INATAA)Université Frères Mentouri Constantine 1 (UFMC1)ConstantineAlgeria
  2. 2.Laboratoire Alimentation, Nutrition et Santé (ALNUTS), Institut de la Nutrition, de l’Alimentation et des Technologies Agro Alimentaires (INATAA)Université Frères Mentouri Constantine 1 (UFMC1)ConstantineAlgeria

Personalised recommendations