Skip to main content

Advertisement

Log in

Bioactive sesquiterpene, plasticizer, and phenols from the fungal endophytes of Polygonum chinense L.

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

There is a constant need for novel antibiotic and antioxidant sources due to the ever-increasing resilience of pathogens and the occurrence of chronic diseases. The natural sources of these agents have advantages due to lower production cost, structural variation, and uses of active compounds for pharmaceutical uses. The microbes living in planta termed “endophytes” are alternative sources of host bioactive compounds. In this study, ten endophytic fungi were isolated from Polygonum chinense L. and identified by sequencing of the internal transcribed spacer regions. The fungal strains were fermented and the ethyl acetate extracts were evaluated for antimicrobial and antioxidant capacities. Almost 80% of the endophytes showed antibacterial potency against one or more pathogenic bacteria. Among all strains, Penicillium canescens showed broad-spectrum antimicrobial activity against gram-positive and gram-negative pathogens as well as significant antioxidative and DNA protective capacities. The strain Fusarium chlamydosporum displayed significant anti-radical (126.8 ± 6.7 μg/ml) and ferric reducing (84.7 ± 2.1 mg AA/g dry extract) capacities. The bio-autography, chromatography, and mass spectroscopy analyses of P. canescens extract revealed the presence of sesquiterpene (germacrene), plasticizer (phthalic acid ester) along with phenolic acids, flavonoid (quercetin), and short chain hydrocarbons. The secondary metabolites of F. chlamydosporum were identified with phenolic acids as bioactive compounds by chromatography and mass spectroscopy. This study indicates P. chinense endophytes as potential sources of antimicrobial and antioxidant compounds for novel drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Bari MAA, Sayeed MA, Rahman MS, Mossadik M. A (2006). Characterization and antimicrobial activities of a phthalic acid derivative produced by Streptomyces bangladeshiensis, a novel species collected in Bangladesh. Res J Med Sci 1:77–81

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495

    Article  CAS  PubMed  Google Scholar 

  • Aly AH, Edrada RA, Wray V, Mueller WEG, Proksch P, Ebel R (2007) Bioactive metabolites from the fungal endophyte Alternaria sp. and their detection in the host plant Polygonum senegalense. Planta Med 73:940

    Article  Google Scholar 

  • Aly AH, Edrada-Ebel R, Indriani ID, Wray V, Muller WEG, Totzke F, Zirrglebel U, Schachtele C, Kubbutat MHG, Lin WH, Proksch P, Ebel R (2008) Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense. J Nat Prod 71(6):972–980

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Barakat KM, Beltagy EA (2015) Bioactive phthalate from marine Streptomyces ruber EKH2 against virulent fish pathogens. Egypt J Aquat Res 41:49–56

    Article  Google Scholar 

  • Barnett H, Hunter B (1998) Illustrated genera of imperfect fungi. Burgess Publishing, Minneapolis, Minnesota, USA

    Google Scholar 

  • Barros L, Ferreira MJ, Queirós B, Ferreira CFR, Baptista P (2007) Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103:413–419

    Article  CAS  Google Scholar 

  • Bertinetti BV, Peña NI, Cabrera GM (2009) An antifungal tetrapeptide from the culture of Penicillium canescens. Chem Biodivers 6:1178–1184

    Article  CAS  PubMed  Google Scholar 

  • Bauer AW, Kirby WM, Sherries JC, Turck M (1966) Antibiotics susceptibility testing by the standardized single disc method. Am J Clin Pathol 45:493–496

    Article  CAS  Google Scholar 

  • Cai YZ, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  PubMed  Google Scholar 

  • Çelik H, Arinç E (2010) Evaluation of the protective effects of quercetin, rutin, resveratrol, naringenin and trolox against idarubicin-induced DNA damage. J Pharm Pharmaceut Sci 13(2):231–241

    Article  Google Scholar 

  • Chevallier A (1996) The encyclopedia of medicinal plants. Dorling Kindersley, London

    Google Scholar 

  • Das AK, Singh V (2016) Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chem 201:298–306

    Article  CAS  PubMed  Google Scholar 

  • Das M, Nalini MS, Prakash HS (2017) Antioxidative properties of phenolic compoundsisolated from the fungal endophytes of Zingiber nimmonii (J. Graham) Dalzell. Front Biol 12(2):151–162

    Article  CAS  Google Scholar 

  • Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agr 80:1744–1756

    Article  CAS  Google Scholar 

  • Domsch KH, Gams W, Anderson T (2003) Compendium of soil fungi. Academic Press, New York

    Google Scholar 

  • Duthie SJ, Collins AR, Duthie GG, Dobson VL (1997) Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage strand breaks and oxidized pyrimidines in human lymphocytes. Mutat Res 393:223–231

    Article  CAS  PubMed  Google Scholar 

  • Ezhilan BP, Neelamegam R (2012) GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharm Res 4(1):11–14

    CAS  Google Scholar 

  • Guo LD, Xu L, Zheng WH, Hyde KD (2004) Genetic variation of Alternaria alternata, an endophytic fungus isolated from Pinusta bulaeformis as determined by random amplified microsatellites (RAMS). Fungal Divers 16:53–65

    Google Scholar 

  • Hirai I, Okuno M, Katsuma R, Arita N, Tachibana M, Yamamoto Y (2010) Characterization of anti-Staphylococcus aureus activity of quercetin. Int J Food SciTechnol 45:1250–1254

    Article  CAS  Google Scholar 

  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008a) Biodiversity of endophytic fungi associated with 29 Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Huang W-Y, Cai Y-Z, Xing J, Corke H, Sun M (2008b) Comparative analysis of bioactivities of four Polygonum species. Planta Med 74:43–49

    Article  CAS  PubMed  Google Scholar 

  • Ismail IF, Golbabapour S, Hassandarvish P, Hajrezaie M, Majid NA, Kadir FA, Al-Bayaty F, Awang K, Hazni H, Abdulla MA (2012) Gastroprotective activity of Polygonum chinense aqueous leaf extract on ethanol-induced hemorrhagic mucosal lesions in rats. Evid Based Complement Alternat Med Article ID 404012 https://doi.org/10.1155/2012/404012

    Google Scholar 

  • Jing P, Zhao SJ, Jian WJ, Qian BJ, Dong Y, Pang J (2012) Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids. Molecules 17:12910–12924

    Article  CAS  PubMed  Google Scholar 

  • Jordaan A, Taylor JE, Rossenkhan R (2006) Occurrence and the possible role of endophytic fungi associated with seed pods of Colophospermum mopane (Fabaceae) in Botswana south African. J Bot 72:245–255

    Google Scholar 

  • Karamac M, Kosiñska A, Pegg RB (2005) Comparison of radical-scavenging activities for selected phenolic acids. Pol J Food Nutr Sci 14/55(2):165–170

  • Kaul S, Gupta S, Ahmed M, Dhār MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Photochem Rev 11(4):487–505

    Article  CAS  Google Scholar 

  • Lee JC, Kim HR, Kim J, Jang YS (2002) Antioxidant activity of ethanol extract of the stem of Opuntiaficus-indica var. saboten. J Agric Food Chem 50:6490–6496

    Article  CAS  PubMed  Google Scholar 

  • Leslie JF, Summerell BA (2006) The fusarium laboratory manual. Blackwell Publishing, UK, pp 113–278

    Book  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 105:548–554

    Article  CAS  Google Scholar 

  • Maharajan M, Rajendran A, Thomas B, Aravindhan V (2012) Antibacterial and antifungal activities of Polygonum chinense Linn. Asian J Plant Sci Res 2(5):577–580

    Google Scholar 

  • Malhadas C, Malheiro R, Pereira JA, de Pinho PG, Baptista P (2017) Antimicrobial activity of endophytic fungi from olive tree leaves. World J Microbiol Biotechnol 33:46

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  • Mittermeier RA, Mast RB, Del Prado CP, Mittermeier CG (1997) Peru. In: Mittermeier RA, Robles Gil P, Mittermeier CG (eds) Megadiversity: earth’s biologically wealthiest nations. CEMEX, Monterrey, Pp, pp 282–297

    Google Scholar 

  • Muzitano MF, Cruz EA, de Almeida AP, Da Silva SAG, Kaiser CR, Guette C, Rossi-Bergmann B, Costa SS (2006) Quercetin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata. Planta Med 72:81–83

    Article  CAS  PubMed  Google Scholar 

  • Nalini MS, Sunayana N, Prakash HS (2014) Endophytic fungal diversity in medicinal plants of Western Ghats, India. Int J Biodiv. https://doi.org/10.1155/2014/494213

    Article  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti R, Fiorentino A, Scognamiglio M (2014) Endophytism of Penicillium species in woody plants. Open Mycol J 8:1–26

    Article  Google Scholar 

  • Owen NL, Hundley N (2004) Endophytes—the chemical synthesizers inside plants. Sci Prog 87(2):79–99

    Article  CAS  PubMed  Google Scholar 

  • Oyaizu M (1986) Studies on product of browning reaction prepared from glucose amine. J Nutr 44:307–315

    CAS  Google Scholar 

  • Pitt JI (1988). A laboratory guide to common Penicillium species (2nd ed.). Commonwealth scientific and industrial research organization, north ride, Australia, 197 pp.

  • Pizarro JG, Folch J, De La Torre AV, Verdaguer E, Junyent F, Jordan J, Pallas M, Camins A (2009) Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line. Free Radical Res 43(10):985–994

    Article  CAS  PubMed  Google Scholar 

  • Rahalison L, Hamburger M, Hostettmann K, Monod M, Frenk E (1991) A bioautographic agar overlay method for the detection of antifungal compounds from higher plants. Phytochem Anal 2:199–203

    Article  CAS  Google Scholar 

  • Samaga PV, Rai VR (2016) Diversity and bioactive potential of endophytic fungi from Nothapodytes foetida, Hypericum mysorense and Hypericum japonicum collected from Western Ghats of India. Ann Microbiol 66(1):229–244

    Article  CAS  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte host interactions II. Defining symbiosis of the endophyte host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Siqueira CAT, Serain AF, Pascoal ACRF, Andreazza NL, de Lourenco CC, Gois Ruiz ALT, de Carvalho JE, de Souza ACO, Mesquita JT, Tempone AG, Salvadora MJ (2015) Bioactivity and chemical composition of the essential oil from the leaves ofGuatteria australis A. St.-Hil. Nat Prod Res. https://doi.org/10.1080/14786419.2015.1015017

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microb Infect 6(5):535–544

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Liang F, Bin Y, Li P, Duan C (2007) Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 12:679–693

    Article  CAS  PubMed  Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W. & A. (Combretaceae). World J Microbiol Biotechnol 21:1535–1540

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin SJ, Bettadapura J, Guillon P, Grice D, Mahalingam S, Tiralongo E (2013) In-vitro antiviral activity of a novel phthalic acid ester derivative isolated from the Bangladeshi mangrove fern Acrostichum aureum. J Antivir Antiretrovir 5(6):139–144

    Google Scholar 

  • Uzmaa F, Konappa NM, Chowdappa S (2016) Diversity and extracellular enzyme activities of fungal endophytes isolated from medicinal plants of Western Ghats, Karnataka. EJBAS 3(4):335–342

    Google Scholar 

  • Xu L, Zhou L, Li J, Li X, Wang J (2008) Fungal endophytes from Dioscorea zingiberensis and their antimicrobial activity. Lett Appl Microbiol 46:68–72

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grant from The University Grants Commission–Major Research Project (Grant number F.No. 40-307/2011 (SR) dt. 30.06.2011), from the Government of India. The Institution of Excellence, University of Mysore is thankfully acknowledged for the facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monnanda Somaiah Nalini.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, M., Prakash, H.S. & Nalini, M.S. Bioactive sesquiterpene, plasticizer, and phenols from the fungal endophytes of Polygonum chinense L.. Ann Microbiol 68, 595–609 (2018). https://doi.org/10.1007/s13213-018-1367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1367-6

Keywords

Navigation