Skip to main content

Advertisement

Log in

Rapid genus identification of selected lactic acid bacteria isolated from Mugil cephalis and Oreochromis niloticus organs using MALDI-TOF

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are traditionally used in food and feed bio-industries as they have health-promoting probiotic effect for their host and currently considered safe for human and animal consumption. Recently, we isolated 177 strains from freshwater fishes of dams of Tunisia exhibiting antimicrobial activities against various food-borne pathogens and generated a laboratory biobank to be characterized. Herein, we investigated whether MALDI-TOF could assist rapid identification of LAB genus. First, a lactic microflora-selective Man Rogosa Sharpe medium was used. Isolates were further screened according to the antimicrobial activity, using well-difusion agar. In total, four major genera have been well identified and species frequency has been estimated (74% Enterococcus, 24% Leuconostoc, 3% Lactococcus, and 2% Vagococcus). Eighteen isolates was further analyzed using MALDI-TOF. Comparative analysis of spectral fingerprints to six referenced MALDI-TOF fingerprints was carried out from the recently developed USC library (www.spectrabank.org). The intra- and inter-specific phyloproteomic relationships among strains were compared to available phylogenetic data based on 16S rDNA genes. This study showed that MALDI-TOF MS is a potent and reliable rapid method for both discrimination and identification of LABs. This highlights the insight of proteomic approach into the screening of food-derived beneficial microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abee T (1995) Pore-forming bacteriocins of Gram+ bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol Lett 129:1–9

    Article  CAS  Google Scholar 

  • Alm R, Johansson P, Hjerno K, Emanuelsson C, Ringnér M, Häkkinen J (2006) Detection and identification of protein isoforms using cluster analysis of MALDI-MS mass spectra. J Proteome Res 5:785–792

    Article  CAS  Google Scholar 

  • Amenan A, Soro-Yao, Peter Schumann, Philippe Thonart, Koffi M. Djè, Rüdiger Pukall (2014) The Use of MALDI-TOF Mass Spectrometry, Ribotyping and Phenotypic Tests to Identify Lactic Acid Bacteria from Fermented Cereal Foods in Abidjan (Côte d’Ivoire). The Open Microbiology Journal 8:79

  • Andrés-Barrao C, Benagli C, Chappuis M, Ortega Pérez R, Tonolla M, Barja F (2013) Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst Appl Microbiol 36:75–81

    Article  Google Scholar 

  • Angelakis E, Million M, Henry M, Raoult D (2011) Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry. J Food Sci 76:568–571

    Article  Google Scholar 

  • Al-Harbi AH, Uddin MN (2005) Microbiological quality changes in the intestine of hybrid tilapia (Oreochromis niloticus Oreochromis aureus) in fresh and frozen storage condition. Lett Appl Microbiol 40:486–490

    Article  CAS  Google Scholar 

  • Ahn C, Stiles ME (1990) Antibacterial activity of lactic acid bactefia isolated from vacuum-packaged meats. J Appl Bacteriol 69:302–310

    Article  CAS  Google Scholar 

  • Austin B, Stuckey LF, Robertson PA, Efendi I, Griffith DRW (1995) A probiotic strain of Vibrio alginolyticus effective in reducing diseases cause by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. J Fish Dis 18:93–96

    Article  Google Scholar 

  • Balcàzar JL, de Blas I, Ruiz-Zarzuela I, Vendrell D, Calvo AC, Marquez I, Girones O, Muzquiz JL (2007) Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). Br J Nutr 97:522–527

    Article  Google Scholar 

  • Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73:399–405

    Article  Google Scholar 

  • Böhme K, Fernández-No I, Barros-Velázquez J, Gallardo JM, Calo-Mata P, Cañas B (2010) Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting. J Proteome Res 9:3169–3183

    Article  Google Scholar 

  • Bucio A, Hartemink R, Schrama JW, Rombouts FM (2004) Screening of lactobacilli from fish intestines to select a probiotic for warm freshwater fish. Bioscience Microflore 23:21–30

    Article  Google Scholar 

  • Bucio A, Hartermink R, Schrama JW, Verreth J, Rombouts FM (2006) Presence of lactobacilli in the intestinal content of freshwater fish from a river and from a farm with a recirculation system. Food Microbiol (5):476–482

  • Campos C, Rodrıguez O, Calo-Mata P, Prado M, Barros-Velazquez J (2006) Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium and Enterococcus mundtii strains isolated from turbot (Psetta maxima). Food Res Int 39:356–364

    Article  CAS  Google Scholar 

  • Chahad OB, El Bour M, Calo-Mata P, Boudabous A, Barros-Velazquez J (2012) Discovery of novel biopreservation agents with inhibitory effects on growth of food-borne pathogens and their application to seafood products. Res Microbiol 163:44–54

    Article  CAS  Google Scholar 

  • Carbonnelle B, Denis F, Marmonier A, Pinon G, Vargues R (1987) Bactériologie médicale Techniques Usuelles. SIMEP-MASSON Paris 96

  • Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti JL, Ferroni A, Gutmann L, Nassif X (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44:104–109

    Article  CAS  Google Scholar 

  • Claydon MA, Davey SN, Edwards-Jones V, Gordon DB (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:1584–1586

    Article  CAS  Google Scholar 

  • Doan NTL, Van Hoorde K, Cnockaert M, De Brandt E, Aerts M, Le Thanh B, Vandamme P (2012) Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in northern Vietnam. Lett Appl Microbiol 55:265–273

    Article  CAS  Google Scholar 

  • Ehrmann MA, Kurzak P, Bauer J, Vogel RF (2002) Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J Appl Microbiol 92:966–975

    Article  CAS  Google Scholar 

  • El-Jeni R, El Bour M, Calo-Mata P, Böhme K, Fernández-No I,C, Barros-Velázquez J, Bouhaouala-Zahar B (2015) In vitro probiotic profiling of novel Enterococcus faecium and Leuconostoc mesenteroides from Tunisian freshwater fishes. Can J Microbiol 62:60–71

    Article  Google Scholar 

  • Emami K, Askari V, Ullrich M, Mohinudeen K, Anil AC, Khandeparker L, Burgess JG, Mesbahi E (2012) Characterization of bacteria in ballast water using MALDI-TOF mass spectrometry. PLoS One 7:38515

    Article  Google Scholar 

  • Fooks LJ, Fuller R, Gibson GR (1999) Prebiotics, probiotics and human gut microbiology. Int Dairy J 9:53–61

    Article  Google Scholar 

  • Fagerquist CK, Miller WG, Harden LA, Bates AH, Vensel WH, Wang G, Mandrell RE (2005) Genomic and proteomic identification of a DNA-binding protein used in the “fingerprinting” of campylobacter species and strains by MALDI-TOF-MS protein biomarkers analysis. Anal Chem 77:4897–4907

    Article  CAS  Google Scholar 

  • González CJ, Encinas JP, García-López ML, Otero A (2000) Characterization and identification of lactic acid bacteria from freshwater fishes. Food Microbiol 17:383–391

    Article  Google Scholar 

  • Hagi T, Hoshino T (2009) Screening and characterization of potential probiotic lactic acid bacteria from cultured common carp intestine. Biosci Biotechnol Biochem 73:1479–1483

    Article  CAS  Google Scholar 

  • Holland RD, Duffy CR, Rafii F, Sutherland JB, Heinze TM, Holder CL, Voorhees KJ, Lay JO (1999) Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells. Anal Chem 71:3226–3230

    Article  CAS  Google Scholar 

  • Hosseini SV, Arlindo S, Böhme K, Fernandez-No C, Calo-Mata P, Barros Velázquez J (2009) Molecular and probiotic characterization of bacteriocin producing Enterococcus faecium strains isolated from nonfermented animal foods. J Appl Microbiol ISSN 1364-5072

  • Hugenholtz J, Kleerebezem M (1999) Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr Opin Biotechnol 10:492–497

    Article  CAS  Google Scholar 

  • Kumar S, Nei M, Dudley N, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  Google Scholar 

  • Jini R, Swapna HC, Amit KR, Vrinda R, Halami PM, Sachindra NM, Bhaskar N (2011) Isolation and characterization of potential lactic acid bacteria from freshwater fish processing wastes for application in fermentatative utilization of fish processing waste. Braz J Microbiol 42:1516–1525

    Article  CAS  Google Scholar 

  • Majamaa H, Isolauri E (1997) Probiotics: a novel approach in the management of food allergy. J Allergy Clin Immunol 99:179–185

    Article  CAS  Google Scholar 

  • Manero A, Blanch AR (1999) Identification of Enterococcus ssp. with a biochemical key. Appl Environ Microbiol 65:4425–4430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathara JM, Schillinger U, Kutima PM, Mbugua SK, Holzapfel WH (2004) Isolation, identification and characterisation of the dominant microorganisms of Kule naoto: the Maasai traditional fermented milk in Kenya. Int J Food Microbiol 94:269–278

    Article  CAS  Google Scholar 

  • Mesalhy Aly S, Abdel-Galil Ahmed Y, Abdel-Aziz Ghareeb A, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fsih and Shellfish Immunology 25:128–136

    Article  Google Scholar 

  • McCabe KM, Zhang YH, Khan G, Mason EO, McCabe ERB (1995) Amplification of bacteria DNA using highly conserved sequences: automated analysis and potential for molecular triage of sepsis. Pediatrics 95:165–169

    CAS  PubMed  Google Scholar 

  • Messi P, Bondi M, Sabia C, Battini R, Manicardi G (2001) Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. Int J Food Microbiol 64:193–198

    Article  CAS  Google Scholar 

  • Migaw S, Ghrairi T, Le Chevalier P, Brillet B, Fleury Y, Khaled H (2013) Isolation and characterization of enterococci bacteriocinic strains from Tunisian fish viscera. Food Nutr Sci 4:701–708

    Google Scholar 

  • Needleman SB, Wunsch CDA (1970) General method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  CAS  Google Scholar 

  • Nguyen DTL, Van Hoorde K, Cnockaert M, De Brandt E, Aerts M, Le Binh T, Vandamme P (2013) A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int J Food Microbiol 163:19–27

    Article  CAS  Google Scholar 

  • Olsson JC, Westerdahl A, Conway PL, Kjelleberg S (1992) Intestinal colonization potential of turbot (Scophthalmus rnaximus)- and dab (Limanda limanda)-associated bacteria with inhibitory effects against Vibrio anguillarum. Appl Environ Microhiol 58:1–5

    Google Scholar 

  • Pineda FJ, Antoine MD, Demirev PA, Feldmann AB, Jackman J, Longenecker M, Lin JS (2003) Microorganism identification by matrix-assisted laser/desorption ionization mass spectrometry and model-derived ribosomal protein biomarkers. Anal Chem 75:3817–3822

    Article  CAS  Google Scholar 

  • Prescott N, Wathes C, Jarvis J (2003) Light, vision and the welfare of poultry. Anim Welf 12:269–288

    CAS  Google Scholar 

  • Ringø E, Holzapfel W (2000) Identification and characterization of carnobacteria associated with the gills of Atlantic salmon (Salmo salar L.). Syst Appl Microbiol 23:523–527

    Article  Google Scholar 

  • Ringø E, Birkbeck TH (1999) Intestinal microflora of fish larvae and fry. Aquac Res 30:73–93

    Article  Google Scholar 

  • Robertson PAW, Dowd CO, Burells C, Williams P, Austin B (2000) Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmon solar L.) and rainbow trout (Oncorhynchus mykiss,Walbaum). Aquaculture 185:235–243

    Article  Google Scholar 

  • Saito N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Shnit-Orland M, and Kushmaro A (2008) Coral mucus bacteria as a source for antibacterial activity. Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 7–11 July 2008

  • Sica MG, Olivera NL, Brugnoni LI, Marruci PL, López Cazorla AC, Cubitto MA (2010) Isolation, identification and antimicrobial activity of lactic acid bacteria from the Bahia Blanca estuary. Rev Biol Mar Oceanogr 45:389–397

    Article  Google Scholar 

  • Soccol CR, De Souza Vandenberghe LP, Spier MR, Pedroni Medeiros AB, Yamaguishi CT, De Dea Lindner J, Pandey A, Thomaz-Soccol V (2010) The potential of probiotics: a review. Food Technol Biotechnol 48:413–434

    CAS  Google Scholar 

  • Sorroza L, Padilla D, Acosta F, Román L, Grasso V, Vega J, Real F (2012) Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Vet Microbiol 155:369–373

  • Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol 57:3613–3615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles ME, Holzapfel W (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    Article  CAS  Google Scholar 

  • Spanggaard, B., Huber, I., Nielsen, J., B. Sick, E., B. Pipper, C. Martinussen, T., J. Slierendrecht, W. & Gram, L (2001) The probiotic potential againt vibriosis of the indigenous microflora of rainbow trout. Environ Microbiol 3: 755–765

  • Tanigawa K, Kawabata H, Watanabe K (2010) Identification and typing of Lactococcus lactis by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Appl Environ Microbiol 76:4055–4062

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Torodov SD, Dicks LMT (2004) Effect of medium components on bacteriocin production by Lactobacillus pentosus ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soy flour. World J Micobiol Biotechnol 20:643–650

    Article  Google Scholar 

  • Vàzquez JA, Gonzàlez M, Murado MA (2005) Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture 245:149–161

    Article  Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vendrell D, Luis Balcazar J, de Blas I, Ruiz-Zarzuela I, Girones O, Muzquiz JL (2008) Protection of rainbow trout (Oncorhynchus mykiss) from lactococcosis by probiotic bacteria. Comp Immunol Microbiol Infect Dis 31:337–345

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Mohamed El Ayeb, Director of Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis for his constant encouragements. Special thanks are addressed to Mr. Marcos Quintela Baluja (LHICA) for his technical assistance.

Funding

This work was initially co-funded by a grant from the Tunisia-Spain bilateral AECI PROJECT A1/038311/11 and secondly supported by the project BIOVecQ P.S.1.3/08 from the National Institute of Marine Sciences and Technology (INSTM) and the Pasteur Institute of Tunis (IPT), Ministry of Higher Education and Scientific Research and Technology of Information and Communication, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balkiss Bouhaouala-Zahar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Jeni, R., Böhme, K., El Bour, M. et al. Rapid genus identification of selected lactic acid bacteria isolated from Mugil cephalis and Oreochromis niloticus organs using MALDI-TOF. Ann Microbiol 69, 1–15 (2019). https://doi.org/10.1007/s13213-018-1357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1357-8

Keywords